
 
 

A Distributed Spanning Tree Method for Extracting Systems and 
Environmental Information from a Network of Mobile Robots 

Brent Beer 
 

Mobile Robotics Lab 
Department of Computer Science 

SIU Edwardsville 
Edwardsville, IL 62026-1656 

bbeer@siue.edu 

Ross Mead 
 

Interaction Lab 
Computer Science Department 

University of Southern California 
Los Angeles, CA 90089-0641 

rossmead@usc.edu 

Jerry B. Weinberg 
 

Mobile Robotics Lab 
Department of Computer Science 

SIU Edwardsville 
Edwardsville, IL 62026-1656 

jweinbe@siue.edu 

 
 

 
Abstract 

A multi-robot system, like a robot formation, contains 
information that is distributed throughout the system. As the 
collective increases in numbers or explores distant or 
difficult areas, obtaining collective situational awareness 
becomes critical. We propose a method for extracting 
system and environmental information distributed over a 
collective of robots. 

 Introduction and Background 
Endsley (1988) defines situational awareness (SA) as “the 
perception of the elements in the environment within a 
volume of space and time, comprehension of their 
meaning, and the projection of their status in the near 
future.” A robot in a collection of robots, which are 
coordinating as a swarm (c.f., McLurkin, 2004) or a 
formation (c.f., Fredslund  & Mataric, 2002), can ascertain 
information about itself and its immediate surroundings. 
This individual robot SA is useful for tasks, such as 
maintaining relationships within the collective. However to 
accomplish group level tasks, such as the collective 
efficiently pathing around obstacles, the SA of the entire 
assemblage of robots is necessary; we term this collective 
situational awareness (CSA). CSA can be used to issue 
commands across the collective to react to the environment 
or change behaviors to carry out a task. It can also provide 
human operators with environmental information to create 
a comprehensive survey.  

CSA is attained through the accumulation of information 
embodied in individual SA, which is naturally distributed 
information across the collective. Previous work in CSA 
has focused on recognizing boundaries of the collective. 
Fekete et al. (2005) develops a heuristic to estimate the 

size of the boundary graphs based on the observation that 
interior boundaries are often smaller than outer boundary.  
McLurkin & Demaine (2009) implements A method for 
boundary detection where a robot determines a “local 
boundary classification” based on its sensor field-of-
view—if no other units are located in this region, the robot 
is classified as a “boundary”; otherwise, the robot is 
classified as “non-boundary”.  

Our approach to CSA works with a formation of robots 
in which neighborhood relationships are established and 
maintained between two or more robots (Mead et al., 
2009). Having this relationship allows the application of a 
spanning tree-based algorithm applied similarly to 
communication networks for optimizing message passing 
(Pendarkis, 2001). 

Algorithm 
We define the collective of N robots as a graph G = {V, E}, 
in which each robot i is represented as a vertex vi and 
communication between robots i and j is represented as an 
edge eij = (i, j); therefore, V = {v0, v1, v2, …, vN} and E = 
{eij, ∀(i, j)}. We denote the set of all vertices adjacent to vi 
as [vi] = {vj, for all eij | i}. 

We define a message M as having: request data, a 
request transformation function, a processing function, a 
response transformation function, response data, and a hop 
count. Request data (from the sender or parent), reqparent, 
are input parameters necessary for the receiver (or child) to 
process the message. A request transformation function—
denoted req_trans(reqparent)—is used to modify (if 
necessary) data in the received request; its output contains 
the appropriate request data, reqchild, to broadcast to the 



vertices adjacent to the child, [vchild]\{vparent} (i.e., all 
except for the parent). The bulk of message processing 
operations is conducted in the process function, 
proc(reqparent, reqchild); this function may use information 
from the parent’s request, reqparent, as well as the 
subsequent request from the receiver, reqchild. The process 
function returns response data for the child only, denoted 
reschild. A response transformation function—denoted 
res_trans(reschild, {resj, ∀j | vj ∈ [vchild]})—is used to 
process the responses of all relevant adjacent vertices, as 
well as reschild, to produce the appropriate response data for 
the sender, denoted resparent. 

The hop count corresponds to the graph distance—d(i, 
j)—of this message from its initiator (referred to as the 
message root, vroot); we write the hop count at the parent 
and child as hopparent = d(root, parent) and hopchild = d(root, 
child) = hopparent + 1, respectively. These hop counts are 
used to discriminate between values that will be factored 
into the response transformation function. Subsequently, 
hopchild is also used to identify the appropriate parent (if 
there are multiple) to which the child will respond; 
specifically, the receiver will only respond to a single 
parent whose message contained a minimum hop count (of 
all parents). 

By selecting a single parent, we eliminate cycles in 
message responses throughout G; topologically, the set of 
response paths (edges), E’, can be viewed as a tree, in 
which E’ spans G, with vroot as its root. The approach is 
distributed, and does not require a stored representation of 
the tree itself; however, it can be shown that the selection 
of vroot impacts the performance of message passing. 
Specifically, the resulting spanning tree minimizes the hop 
count from vroot to all leaf nodes, and is, thus, considered 
minimal with respect to the operation, but not necessarily 
with respect to the graph as a whole. Strategic selection of 
vroot for a given message is crucial in its performance, and 
will be analyzed in subsequent studies. 

 

 
Figure 1: In response to a message originating from vroot 

(dark blue; left), child vertices respond to their respective 
parent vertices; the accumulated message paths of all 

responses form a spanning tree subgraph (right). 

Implementation and Applications 
The approach was implemented in simulation (Beer et al., 
2010); details of messages useful for CSA can be found at 
http://roboti.cs.siue.edu/projects/formations/props_ops.php. 
Real-world applications could benefit from collective 
situational awareness such as volumetric monitoring, 
environmental exploration, and target tracking. For 
example, consider the Spring 2010 Deepwater Horizon oil 
spill in the Gulf of Mexico (Avery, 2010); a large 
collection of robots could be deployed to monitor the 
location and distribution of the oil in the region, and 
perhaps traverse the spill for extraction and cleanup. 
Though data is sampled and shared locally, the distributed 
spanning tree communication method provides a means to 
propagate and process this data to a collective situational 
awareness a guide group-level control strategies. 
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