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ABSTRACT 
 

DISTRIBUTED AUCTION BASED INITIALIZATION  
OF MOBILE ROBOT FORMATIONS 

 
by 
 

Rob Long 
 

Chairperson: Dr. Jerry B. Weinberg 
 

 The field of multi-robot coordination, specifically robot formation control, 

is rapidly expanding, with many applications: reconnaissance, urban search and 

rescue, surveying, sensor networks, and exploration. One of the most compelling 

applications considered is that of space-based solar power collection, in which, 

satellites are placed in outer-space in order to harvest sunlight directly, before it is 

filtered by the earth’s atmosphere. As Bekey et al [5] have suggested, an excellent 

solution to the problem of building such solar collectors is that of multi-robot 

formations. Mead et al [19] have begun the work of describing a method to fully 

address this concept. This project addresses an issue raised in Mead’s work: how to 

initialize the formation of robots from an unorganized swarm. 

This work explores two distributed auction-based methods to 

autonomously initialize and reorganize the network structure of a formation of 

mobile robots. The push auction method casts the members of the formation as 

auctioneers and unassigned robots as bidders on neighboring positions within the 

formation. Unassigned robots become members of the formation as they win auctions 

and get pushed onto the endpoints of the formation. The insertion auction method 

reverses the roles and casts the unassigned robots as auctioneers and the members of 

the formation as bidders with unassigned robots being inserted into the formation in 

the position of the winning bidder. 
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The two methods were implemented in simulation. Experiments varying 

the size and shape of the formation were conducted on both methods. The results 

were evaluated with regards to several parameters: time to converge, average time 

for a robot to join the formation, total distance traveled, distance traveled per agent, 

total messages sent, messages sent per agent, and messages sent per time step. 
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CHAPTER I 

INTRODUCTION AND SIGNIFICANCE 

Problem Statement 

 The field of mobile robotics, particularly formations of and interactions 

among mobile robots, is a growing area of study.  Proposed applications for large 

formations of mobile robots are numerous already and include many domains: search 

and rescue, battlefield reconnaissance, exploration and survey, and adaptive 

structures. Some proposals call for formations of robotic satellites, specifically space-

based solar power collection [5] and sparse aperture telescopes like NASA's 

Terrestrial Planet Finder [2] and the ESA's Darwin [9; Fig. 1].   

Fig.1: An Illustration of ESA's Darwin [9] 
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Such applications call for large amounts of homogeneous mobile robotic satellites to 

maintain a fixed formation, maneuver and maintain formation, and exhibit fault-

tolerance such that the total disabling of an individual agent can occur without 

affecting the function of system as a whole. 

Formation Control 

 Solutions to the problem of command and control of a formation of robots 

fall into two main categories. The first approach, a top down, hierarchical approach, 

can be implemented as either a system consisting only of mobile robots, where one 

robot is assigned as a leader and issues orders to the other members of the 

formation, or as a group of robots controlled by a central planner with a view of all 

the robots, which then issues commands to control all the robots.  This approach is 

an intuitive solution to the problem, yet it presents some serious drawbacks that 

reduce overall resilience and performance. The leader must have a representation of 

all the agents in formation and calculate destinations for all agents during a 

formation maneuver. This represents a large amount of computation as the number 

of agents increases and introduces a possibly dangerous amount of lag time between 

sensor input and reaction.  The top down approach is also subject to a single point 

of failure; that point being the lead agent or central controller.  If the leader or 

controller of the formation is disabled or malfunctions in some way, the entire 

formation can be lost due to lack of communication or faulty orders issued to the 
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formation. 

 The second type of solution is the bottom up approach, where decision-

making is devolved from the central controller to the individual agents. Treating the 

formation as a collection of individual agents has several advantages.  First, the 

computation of formation maneuvering is naturally distributed across the entire 

formation. For example, Mead's solution [19] presents the individual agents as cells 

in an n-dimensional cellular automaton. 

Fig. 2: A Parabolic Single Function Formation [20] 

 
Each agent need only be aware of its location and orientation plus the state, 

location, and orientation of its cellular neighbors in order to calculate its new 

location and orientation, rather than requiring one agent to be aware of the location 

and state of each agent in the formation. A second advantage over top down 

solutions is the lack of a single point of failure. Since the formation has no leader, it 
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is not subject to loss of function resulting from the loss of the controller or leader.  

 While there have been a number of methods for maintaining robots in 

formation, there has been very little work done in coordinating the transformation of 

a swarm of robots into a formation.  Methods such as Mead [19] and Fredslund and 

Mataric [10] assume that in a collection of robots the organization of robots into 

neighborhoods is already known, so negotiating a positional relationship between a 

robot and its neighbors can be done immediately. However, this is not practical for 

most applications.  Consider for example, the Space Shuttle releasing a swarm of 

robots in orbit that must form an array for collecting solar power.   

 

Fig 3: Deployment of a Formation from a Delivery Vehicle 
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The robots must first determine which among the swarm are their neighbors before 

they can negotiate a relationship.  Developing an algorithm to dynamically form 

neighborhoods is a necessary step to allow a swarm to become a formation.  

Phase Transition Metaphor 

 The focus of this work has been the development of a method for 

efficiently transitioning from a swarm to a formation.  This transition will be 

referred to as a phase transition [23] since it has many parallels to the phase 

transitions observed in matter. For example, it is useful to think of a group of mobile 

robots with no particular programming for interaction with each other, aside from 

collision avoidance, as similar to matter in a gaseous state. That is, the volume and 

shape the robots take on, when taken as a collection, is determined by their 

surroundings.  Robots traveling in a swarm are similar to matter in the liquid phase, 

since they have a fixed volume, but no fixed shape. A swarm will assume the shape 

of the boundaries of its surroundings but will have a fixed overall volume.  Robots 

traveling in formation are similar to matter in the solid phase.  Robots in formation 

resemble crystalline formations, with fixed volume and fixed shape. Robot formations 

may also have a repeating internal structure, which is situated in a repeating lattice. 

 In this work methods for initialization of a formation are explored using 

distributed auction algorithms. Auctions are typically used to solve resource 
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allocation problems, as in the “Contract Net Protocol” described by Smith [22] and in 

the work of Gerkey and Mataric [11].  Auctions provide a method of allocating 

resources, held by sellers, to agents that require those resources, the buyers. In the 

terminology of auctions, the seller makes use of an auctioneer, possibly the seller 

itself, and the buyer places bids on the items, which the auctioneer presents, to the 

sellers. An open call auction is one in which all of the bids proffered are known to all 

other bidders.  A distributed auction is conducted by some group of sellers and 

buyers, usually assuming that all participants are trustworthy, in which all bids are 

issued and the auction settled without the aid of a central organizer. In the work of 

Gradwell and Padget [12], distributed auctions optimized for buyers are found to 

“increase the total number of items sold, cause a greater number of bidder's 

requirements to be met, and resulting run times are more consistent.”  A distributed 

auction algorithm may also be applicable to other formation problems, such as 

formation repair due to loss or disabling of some subset of the robots or re-forming a 

formation after obstacle avoidance or possibly merging two previously independent 

robot formations. 

 In Mead's [19] solution for control of large formations of robots, a “seed” is 

required to receive instructions and act as a catalyst for initiating orders.  The seed 

does not directly relay orders to the rest of the formation, but rather, adjusts itself 

to the desired position and orientation, which causes its neighboring robots to adjust 



7 

 

their position and orientation to match, thus propagating the change across the 

entire formation.  As part of the initial formation, a robot needs to be identified as 

the seed of the formation.  One approach is to have a “Seed Election” that would 

enable a formation to select a new seed agent autonomously. A second approach is to 

allow the operator of the agents to select a seed at will. Any method for selecting a 

seed should consider minimizing the amount of maneuvering resulting from future 

position or orientation changes. This method must also seek to minimize the number 

of vertexes, when considering robots as nodes and a link to a neighbor as a vertex, in 

order to ensure the quickest propagation time for changes in position or orientation. 

Purpose of the Project 

 The purpose of this project is to explore distributed autonomous 

algorithms for transforming a swarm of robots into an organized formation of robots. 

The project will build on top of Mead’s [19] formation algorithm, CATALST, to 

create a distributed, auction-based method for establishing neighborhood 

relationships between homogeneous robots that define the formation. Parameters 

that will be used to evaluate the methods are total time to converge, average time to 

converge, total distance traveled, average distance traveled, total messages send, 

average messages sent, messages sent per time step, and generality of achieving 

different formations.  
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CHAPTER II 

CONTEXT, BACKGROUND, AND LITERATURE REVIEW 

Previous Work on Swarms and Formations 

 In the study of multiagent systems there are many approaches to 

regulating the interactions of agents; specifically, physically instantiated agents like 

mobile robots. Dudek, Jenkin, and Milios in [8] have proposed a useful taxonomy of 

Multiagent Systems of mobile robots.  A swarm is defined as a “number of smaller, 

simpler robots”, this in comparison with a single more complex robot meant to 

achieve a goal such as interplanetary exploration, [8]. Dudek et al [8] define a group 

of seven axes along which may be located any swarm or collective of mobile robots, 

depending upon the capabilities and makeup of the swarm [Fig. 4]. 

Fig. 4: Seven Taxonomic Axes [8] 
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Swarms 

These axes provide a framework within which the features of a group of 

mobile robots may be described. The first axis, Collective Size, is one area in which 

the techniques explored in this paper and those of Mead [19] differ from much of the 

existing work. In Fredslund and Mataric's [10] approach to formations, the largest 

formation attempted with physical robots was 4, with the largest simulated 

formation attempted being 10 robots.  It is unclear from the paper [10] whether the 

method would scale well to larger numbers of robots.  In Atay and Bayazit's [1] 

description of an “Emergent Task Allocation” method, no physical implementation 

was attempted, but the largest number of robots attempted in simulation was 30. 

Their method has a complexity that is limited by k, the number of neighboring 

robots to exchange information with, and the number of targets being tracked.  The 

maximum number of robots supported by this method greatly depends upon the 

mission parameters.  While their emergent task allocation greatly out-performs the 

centralized global optimization approach, it still took as long as 16 seconds to arrive 

at a solution for a single time-step in a simulation involving 20 robots tracking 10 

targets [1].  In comparison to these implementations, the Space Solar Power project 

will require a formation of robots on the order of 103 robots [5]. This increase of two 

orders of magnitude will overwhelm these approaches by requiring too much time to 

calculate solutions. 
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Swarms vs Formations  

 It is important at this point to differentiate between a swarm and a 

formation. Mead [19] describes a swarm as “a massive collection that moves with no 

group organization”. A formation, on the other hand, is defined as similar to a 

swarm, but maintaining some global structure [19].  This global structure can be 

defined as an extra frame of reference in which the member robots are situated.  

Formations have an extra frame of reference, the formation-relative position, which 

refers to the relative position of a robot within the formation. Swarm robots are 

limited to a global frame and individual robot frame.   

 To make a clear distinction between swarms and formations, a natural 

example of a swarm is a school of fish.  The individual members of the school have 

no fixed relationship to any of the other members.  The school undulates and 

changes size and shape as it maneuvers, with individuals changing position relative 

to one another. In Reynolds' [22] seminal work on swarms, he demonstrates that a 

simple set of rules governing and individual's positional relationship with its 

neighbors can attain overall swarm behavior [Fig.5]. 

Fig. 5:  Swarm Steering Behaviors [22]. 
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 However, it is useful to draw a distinction between swarms and 

formations. Where a natural example of swarm may be found in a school of fish, an 

example of a formation in nature is found in a “V” shaped flock of migratory birds.  

Such natural formations differentiate themselves from swarms in that any two 

individuals will maintain a relatively constant relationship to one another, with 

respect to alignment and cohesion [22], as the formation moves and maneuvers.  The 

overall shape of the formation remains fixed despite changes in direction. 

Fig. 6: Left – a Swarm, School of Fish; Right – a Formation, Flock of Geese 
 

Formations 

 Work on mobile robot formations has focused on methods for maintaining 

formation relative positioning [10, 16, 17, 19, 20, 23, 25, 27]. Mead [19] has shown 

that a Cellular Automaton may be used to regulate an individual robot's behavior 

with respect to its neighbors, producing order as an emergent property among the 

group.  Individual behaviors are determined by the desired outcome, that is, which 

formation is communicated to the seed robot. The seed orients itself to the proper 
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global position and heading as specified by the human operators, then those robots 

in the seed's immediate neighborhood orient themselves based on the current 

formation, to the seed. A key innovation of Mead [19] is the use of a  “Robot Space” 

automaton in place of a “World Space” automaton. 

The CATALST Approach to Formations 

 The World Space automaton presumes that the space in which the robots 

exist is gridded off into cells. These are the cells of the automaton, and the states of 

these cells are binary, either containing a robot or not.  As Mead [19] points out, this 

model leads to some problems when applied to physical robots [Fig. 7].   

Fig. 7: Illustration of the Problems Encountered Using a World-Space Cellular Automaton: 
(a) Robot Not Located Inside Any Single Cell; (b) Automaton is Bounded; (c) Automaton 
Boundaries are Wrapped, Which Doesn't Reflect Reality; (d) Inter-Robot Collisions Occur 

[19] 
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An assumption implicit in the world space model of cellular automata robot control 

is that a robot must occupy one and only one cell at a time. This assumption is 

likely to be tested immediately upon deployment. Some amount of error is 

unavoidable, and will lead to robots overlapping cell boundaries over time, 

presenting a hazard to other robots and distorting the formation. This assumption, 

coupled with the fact that the cells must cover a finite area from which the robots 

cannot leave, means that the world space model is quite fragile.  The biggest issue 

with the world space view of applying cellular automata to controlling formations of 

mobile robots is the implicit requirement that there be a single system, with 

knowledge of all local conditions and all locations of the robots, which manages the 

automaton.  The member robots could themselves carry out the necessary processing 

to determine the state of the cell they currently occupy, but in a system where space 

itself is divided into cells, processing must also be done for the empty cells.  This 

rules out a non-hierarchical approach. 

 The “Robot Space” or “Application Space” solution proposed by Mead, et 

al [19], models the robots themselves as the cells and the formation definition 

determines the distances and angles between the members of the formation [Fig. 8].   
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Fig. 8: A One-Dimensional Robot-Space Automaton [19] 

 
Thus, this solution addresses the problem of requiring a single “all seeing” system to 

process the state of each cell and issue orders to the robots.  The robot-space 

solution effectively distributes the management of the cellular automaton to each 

individual in the formation. This eliminates a large amount of communication as 

well. The robot-space solution also eliminates the problem of a limited grid size and 

is more tolerant of robot performance in the physical world in that it does not fall 

apart if the robot does not happen to be within one discrete gridded off portion of 

the world as known to a centralized controller.  In terms of [8]'s axes, [19]'s solution 

would be a finite state automaton, along the Processing Ability axis. 

 The inter-agent communication required by the robot-space automaton is 

limited to a few key parameters.  These parameters are summed up in the definition 

of a state, si. Mead et al. [19] define state formally as: 

 si = { p, rdes, ract, Θ, Γ, t}                                        Eq.1 [19]  
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The state si is that of the cell ci, in a one-dimensional automaton. The 

variable p stands for the position of the cell within the formation, or the formation-

relative position, rdes represents the desired relations with neighboring cells, ract 

represents the actual relationships with all neighboring cells, Θ represents the 

rotational error, Γ represents the translational error, with t representing the time 

step.  The neighborhood of a cell ci in a one-dimensional automaton can be defined 

as the set of the states {si-1, si, si+1}.  This requires a robot to transmit this 

information at most twice, once to each neighbor. 

Other Approaches to Formations 

 Sawada et al. [23] developed a method to control conference room tables 

with the goal of organizing them for a dynamic schedule of various events. This 

method utilizes an overhead camera and infrared LED’s in order to sense the 

location and orientation of the table robots. The camera is linked to a central control 

agent that calculates the paths and final locations for the table robots. 

 The Distributed Flight Array of Oung et al. [21] represents a distributed 

approach to formation control and initialization. The solution utilizes a large light 

that shines down on all the robots that will be included in the formation. The 

individuals move in order to maximize the reading on their photometers. This causes 

the individual agents to gather at the center of the cone of light projected by the 

light source, where the individuals physically dock with one another, making 
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connections that are held fast. The formation makes further calculations to 

determine the balance of the torque generated by the main propellers of the 

individual agents. 

The approach of Mead et al. [19] has some advantages over previous 

formation control schemes. For example, Fredslund and Mataric's [10] use a “friend 

sensor” in order to track one robot in formation to which the individual has a defined 

relationship.  This sensor, which was implemented as a combination of a laser range 

finder and a color camera, is used to recognize the presence and orientation of a 

neighbor, which is determined prior to deployment.  Distance and angles between 

neighboring robots are determined by the formation definition. The angle between 

individuals is determined by the formation definition and maintained by panning the 

friend sensor so that the resulting angle between the individual and its friend is also 

adjusted by the same angle. Because the follower robots must always reference a 

leader, a drawback of using the physically panning sensor with a rotational range of 

180 degrees in the Fredslund and Mataric [10] solution, is that “frontally concave” 

formations, such as a “J” or “U” shape are not possible.  This limitation could rule 

out this solution for use in Space Solar Power [5] applications that may benefit from 

the use of a parabolic formation. A second drawback of the Fredslund and Mataric 

[9] solution is the requirement that all formation arrangements be either one 

dimensional or folded variants of one-dimensional formations. [10; Fig. 9].   
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Fig. 9: An Example of a Folded 1-Dimensional Formation and Required Function 
to Calculate the Friend Angle. The Numbers at the Nodes Represent the Id's of 
the Members of the Formation, with 4 being the Conductor. Fredslund and 
Mataric [9] 

 

This does not preclude the formation of rectangular or hexagonal grids, but does 

imply that computational requirements might be higher for individual robots and 

that error in friend angle calculations or alignment will be magnified and effect the 

entire formation if the error were near the “conductor” of the formation. 

 A multi-function approach to formation definitions has been proposed by 

Mead et al. [19, fig. 10].  

Fig. 10: Multi-Function Formation with Three Formation Definitions [19] 
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The proposed method is identical to the one-dimensional approach, but with an 

expansion of the formation definition F from a single function to a series of M 

mathematical functions to describe the relations of neighbors in the formation. 

However, if the functions [Fig.10: f1, f2, and, f3] are used to calculate the desired 

relationships for this automaton, without taking further steps to adjust for two-

dimensionality, an odd “six armed” shape is created which is not what is expected 

[Fig.11 B].   

Fig.11: A) Desired Shape of a Hexagonal Lattice Formation, B) Actual Shape 
Resulting From 3 Formation Definitions, Implemented as One-Dimensional CA's  
[19] 

 

A hexagonal lattice is the expected result [Fig.11 A], and this can be 

achieved if the formation relative position used to calculate the desired relationship 

to a neighbor is altered so that each individual sees itself of the center of the 

formation and has a neighborhood of six robots. 
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Previous Work on Distributed Auctions  

A method for coordination among groups of mobile robots that has 

received much attention is that of the auction.  Implementations of auctions for 

mobile robot coordination take many forms, from the high-level framework for 

communicating the terms of auctions, the “contract net protocol” [24] to the more 

specific application of auction algorithms to the allocation of tasks to a 

heterogeneous group of mobile robots [11]. 

 The very nature of auctions suggests the development of distributed 

auction algorithms.  The most basic form of parallelism in auction algorithms is that 

of the simultaneous calculation of bids by buyers in the auction.  In the work of 

Smith [24], the benefits of a distributed solution are elaborated upon at length. 

These benefits mirror those of decentralized control in many ways, including the lack 

of a single point of failure, the spreading around of information so that more 

information is available to more individual nodes, and the ability to route around 

congestion. 

Problems With Distributed Auctions 

 Lagoudakis et al [15] have pointed out that many task/target allocation 

cost minimization problems in mobile robotics are NP-Hard.  This implies that the 

auction solution, especially the Sequential Single Item (SSI) auction, which is “a 

series of auctions in which a single item is auctioned off” with as many auctions as 



20 

 

there items to be auctioned, is not guaranteed to find an optimal solution [14]. 

Fig 12: Three Auctions Reference the Same Position. 

 
 An issue that must be dealt with when considering the use of auctions to 

initialize a formation, is the possibility that two or more auctions will exist for the 

same position in the formation, but originating from two or more robots [Fig. 12]. 

 An approach to solving the multiple auctions of the same item, in the case 

of this project, that single item being a single formation relative position, is that 

explored by Sujit and Beard [26], where the authors are solving the problem of 

multiple UAV's spotting the same target, and auctioning off the attack of the same 

target, multiple times by different UAV's. The method explored in [26] was that of 

staging a two round auction process. In the first round, any agents that have 

encountered a target within their sensor range are to broadcast a validation request 

to all agents inside communications range.  If a UAV receives a validation request, it 

evaluates that request against any targets it is detecting and also against any other 

validation requests received from other agents.  In this manner, even if two UAV's 
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are able to spot the same target, and happen to be unable to communicate with each 

other, but both can communicate with a third UAV, the overlap in target allocation 

can be detected [26]. 

Fig 13: Three Cases in Which Ambiguities Can Arise [26] 

 
 In figure 13, three cases are presented by [26] in which there is ambiguity 

as to which UAV should auction a target, whether or not the targets can be 

validated, and how to make decisions regarding which targets to bid on. In case 1 

[fig 12a], UAV's A1 and A2 can both sense target Т1.  The validation round in the 

auction process resolves this ambiguity by allowing A1 and A2 to report each other's 

target as non-unique. The algorithm described by [26] gives ownership of the 

auctioning responsibilities to the UAV with the shortest Dubins path to the target, 

Dubins path being the shortest possible path on a plane between two points, along 

which a nonholonomic vehicle with a known minimum turning radius can travel. 

This case is similar to the situation portrayed in figure 12 between R1 and R2.  

Disambiguation can be accomplished in the same manner used by [26].  In case 2 [fig 

12b], A1 and A2 can detect target T1, but cannot communicate with each other, they 
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can however, communicate with a third UAV, A3. This situation is resolved in the 

validation phase within A3, which will compare the validation requests from A1 and 

A2 and find that both requests are the same.   

In a square lattice formation of robots overlapping auctions can occur. 

Additionally, robots that are not neighbors of each other will hold these auctions. 

Robots not located in the same neighborhood cannot be assumed to be able to 

communicate with one another outside of the broadcast framework of auction 

announcement and bid communication. A solution to disambiguate the proper 

auctioneer of this position must be found in order to generalize the use of auctions 

across single and multi-dimensional formation definitions.  

 

Fig.14: Square Lattice Overlapping Auction Problem. 

 
This situation is similar to case 2, in that a robot may act as a go 

between to settle the dual listing of the relationship in auctions.  In case 3 [fig 13c], 
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there are three UAV's, A2, A3, and A4, which can each detect a single target, T1, T2, 

and T3 respectively. 

Other Approaches to Distributed Auction-Based Initialization of Robot Formations 

 At the time of writing, the only published method for autonomously 

initializing a formation of mobile robots, or causing a swarm of robots to undergo a 

phase transition into a formation, known to the authors, is that demonstrated by 

Lemay et al. [16].  The method is built around a formation control architecture, 

which is very similar to that of Fredslund and Mataric [10], in that it is implemented 

with a follow-the-leader method, with each robot using a sensor to track the lead 

robot.   

The autonomous initialization method of Lemay et al.[16] begins with 

each robot executing a 360° turn in order to find via camera, which robots are within 

its sensing range.  The robot then places a row containing a column with the ID of 

each visible neighbor on a “visibility table”. Once this phase is complete, the robots 

exchange their visibility information, and new rows are added to each robot’s 

visibility table, representing the robots visible to each of the other robots.  Each 

individual then uses this data, assumes it is the conductor, or leader, of the 

formation, and does a “bounded depth-first search” looking for the most efficient 

configuration [16].  Since each individual performs this search, the algorithm 

implements a distributed depth-first search. When the result of the search is 
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obtained, the individuals each broadcast their best configuration, and the lowest cost 

configuration is chosen and implemented [16]. 

 While the method employed by Lemay et al [16] does utilized distributed 

auctions in order to dynamically assign neighbors in a formation of mobile robots, 

the approach differs substantially from that employed in this work. While the work 

of finding the best starting configuration is distributed among the individual agents, 

it is still calculated in a top down method, with each agent being assigned a subset 

of state-space of the problem to work on. So the choice of distributing the work of 

calculation among the agents of the swarm is purely conventional. The solution 

sought by this algorithm is not emergent. The problem with the [16] approach 

remaining a top down method is that it requires each agent in the collection to have 

knowledge of all other agents. As the number of agents increases, the demands on 

computing power and space will increase greatly. Also, as the agents are distributed 

further away, unified communication becomes difficult. Even with message passing, 

the complexity of this solution is great. 

 The solution developed for this project, which will be described in the 

next chapter, is an emergent solution. While this represents an approximation of the 

ideal solution, it does distribute the problem in such a way that a central control 

agent cannot mimic it. The solution relies upon the interactions of multiple agents, 

simulated or actual, in order for the desired outcome to emerge.  
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CHAPTER III 

DISTRIBUTED AUCTION-BASED INITIALIZATION  
OF FORMATIONS OF MOBILE ROBOTS 

 
 

 In this chapter, two distributed auction-based methods for initializing a 

formation of mobile robots are discussed. The first, the push auction method, casts 

the cells of a formation as auctioneers and the unassigned robots as bidders in which 

winning bidders are added to the endpoints of the formation. The second method is 

the insertion auction method, which reverses the roles and casts the unassigned 

robots as auctioneers and the cells of the formation as bidders in which the winning 

bidder moves along the formation function and inserts the auctioneer into the 

position just vacated by the bidder. 

Assumptions 

With both approaches there are several underlying assumptions that are 

vital to understanding the environment and conditions in which the solutions 

proposed are made. 

 It is assumed that the collection of robots to be organized into a 

formation is homogeneous. Each robot is assumed to be able to carry out the duties 

expected of it at any position in the formation to an equal capacity. 

 It is assumed that the robots to be organized are holonomic robots. That 

is, it is assumed that each robot has the capability to move in any direction without 
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first translation through the x, y, or z axes. Rotation without translation is allowed. 

This assumption has been made in order to simplify the implementation and analysis 

of the auction algorithms, however, the auction methods discussed here are 

generalizable to nonholonomic robots as well. 

 It is assumed that each robot is capable of communicating with all other 

robots within a defined radius via wireless means. For the purpose of implementing 

an effective simulator, it is also assumed that communications are transmitted and 

received without error, as such issues as error correction and detection are beyond 

the scope of this work. 

 It is assumed that each robot possesses a reactive control architecture and 

the appropriate sensor suite in order to permit it to avoid obstacles independent of 

the formation architecture or the initialization method. 

 It is assumed that all sensors work instantaneously and without error. 

Again, this is done in order to facilitate the implementation of the auction algorithm 

rather than reproducing work in the area of sensor error estimation and correction, 

which is beyond the scope of this work. 

 While the method explored in this work are applicable to robots operating 

in a three dimensions, perhaps in an underwater setting or the vacuum of space, the 

simulator is currently restricted to two dimensions. The topology of the two-

dimensional space in which the simulation occurs is an infinite flat plain. Obstacles 
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introduce an interesting dynamic into both local path planning for individual robots 

and for formation initialization.  

 In addition to the previous assumptions about the robots, their 

capabilities, and the environment in which they are located, there are some 

assumptions regarding the status of the robots with respect to the CATALST [19] 

architecture. 

 It is assumed that the formation definition contains one function. While 

the methods discussed below have been considered for use in multi-function 

formation definitions, it is assumed that the formation is a single function formation.  

 It is also assumed that before either of the distributed auction methods 

are applied that a formation of one or more cells has already been established. This 

assumption is made in order to distinguish this work from the work on seed selection 

algorithms being done by Beer et al [4]. The individual agent chosen to be the seed 

affects the overall efficiency of the process of initializing a formation of mobile robots 

significantly, but such concerns are beyond the scope of this work.  

Push Auction Method 

 The push auction method casts cells as auctioneers selling their 

neighboring formation-relative positions. Robots that are not yet part of the 

formation are cast as bidders, and newly added robots become cells that are “pushed” 

onto the ends of the formation.  
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Push Auction Algorithm 
  

/* Process Running on Cell */ 
 /* Determine if an auction should be held, if so announce it */ 
1 if n < nmax and Γ ! 0 then 
2         broadcast(A(pj)) 
3         ta := COUNTDOWN_TIME 
         /* Accept bids and decrement auction timer */ 
4        while ta > 0 do 
5                  if front(incoming_messages) = B(pj) then 
6                           enqueue(bidqueue,B(pj)) 
7                  ta := ta – 1 
8         End 
9 End 
 /* If no bids received, restart */ 
10 if size(bidqueue)=0 then exit 
 /* Sort received bids, select lowest, announce winner */ 
11 sort_ascending(bidqueue) 
12 bw := front(bidqueue) 
13 broadcast(pj, state(bw->ID)) 
 /* At this point, winning bidder becomes a cell */ 

 
 /* Processes Running on Unassigned Robot */ 
 /* Auction Watcher */ 
1 while front(msgqueue) ! A() do 
2         get_messages(msgqueue) 
3 end  
4 foreach A(pj) ! msgqueue do 
5          broadcast(B(pj)) 
6 End 
 /* Transformation Watcher */ 
7 while front(msgqueue) ! {pj, state(self->ID)} do 
8          get_messages(msgqueue) 
9 End 
10 transform_robot_to_cell(pj sj) 
11 kill auction_watcher process 
12 kill transformation_watcher process  

Fig. 15: Push Auction Algorithm 

 
The push auction algorithm is described in [Fig. 15] above. This algorithm 

is divided up into two key portions: the process to be run by a cell and the process 
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to be run by an unassigned robot. It is essential to the distributed nature of this 

algorithm that both processes run concurrently. Communication between the 

processes is accomplished by means of the publish/subscribe method discussed in 

Chapter IV: Implementation. 

It is assumed that a seed cell has already been selected, and that the 

formation definition has been transmitted to this cell. This example uses the function 

of f(x) = 0 as the formation goal, which is a horizontal line, with cseed as the seed cell 

[Fig. 16]. 

 

Fig. 16: Example of a Formation With a Function of f(x) = 0. 

 
 Initially the robots are in a swarm, a collection of four robots (r0, r1, r2, 

r3) scattered in a random distribution, with a robot, cseed designated as the seed [Fig. 

17]. The push auction method begins when the seed receives a signal from a 

controller outside the formation to begin. The seed takes this signal to be a 

formation change request that establishes the parameters for the formation. Once 

this is received, the seed calculates the desired positions of its neighbors. The sole 

member in the formation begins the auction process if the requirements for 

auctioning are met [Fig. 15, line 1].  



30 

 

 

Fig. 17: Four Robots Around a Formation Containing a Single Cell cseed 

  
In the push auction method there are several prerequisites that must be 

met before the cell in question may initiate an auction. First, a cell must have an 

incomplete neighborhood (n < nmax)[Fig. 15, line 1]. In the example of a single 

function formation definition this means that a cell must have fewer than two 

neighbors. In the case of the seed, cseed has zero neighbors as it is the sole member of 

the formation. In the example, cseed has no neighbors, and can auction off the 

formation-relative positions to the left and the right. Second, the cell in question ci 

must have a translational error ! magnitude that is less than some arbitrary amount 

set by the formation controller. In order to minimize the distance traveled, disallow 
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auctioning until the condition ! " 0 is true. While this rule applies to all cells 

including cseed it does not limit the seed quite as much since the seed will only ever 

have a translational error above zero when the formation controller has issued new 

global coordinates for the formation to move to and cseed has yet to arrive at that new 

location.  

If there is no restriction on the ! of a cell wishing to initiate an auction, 

there will be a chain reaction of auctions before the robots have time to move into 

their new positions in the formation. This has two drawbacks vis-à-vis the push 

auction algorithm. First, each auction held by a cell with a relatively high Γ will 

result in bids that are based upon the current position of the cell and not the desired 

position of the cell. This results in a higher total distance traveled [Fig. 18]. For 

example, ri wins auction ai. At this point, ri becomes ci and if there is no restriction 

on cells holding auctions until ! " 0, then the auction aj* will be held. 

 

Fig. 18: No Restrictions on Γ Results in a Longer Path for ri. 
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The robot rj will win this auction and as it moves to take its position it becomes ci. 

This new cell will be moving towards the location of ai. This will yield the much 

longer dotted, curved path to aj. However, if auctions are restricted until cells have 

reached a near zero Γ, then the auction aj will be held and cj will move along the 

black colored path, which is a great deal shorter. 

The second drawback of this chain reaction of auctions is that each robot 

that is not yet a member of the formation will be moving into position once it has 

been won an auction. This may not immediately seem like a problem, but it creates 

a condition where many robots in motion in the same area increases the likelihood of 

collisions and increases the total distance traveled by causing collision avoidance 

behaviors to be activated in the various individual robots. 

At this point, if cseed meets the above requirements, it will prepare an auction 

announcement [Fig. 15, line 2]. An auction announcement for a push auction of the 

formation-relative position pj is expressed as A(pj) = {sseed, pj } where sseed is the state 

of the seed and pj is the formation-relative position up for auction [Fig. 19]. Once the 

auctioneer transmits the auction announcement, a timer is set that counts down 

[Fig. 15, line 3]. This timer is the amount of time that the auction will remain open.  
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Fig. 19: The Unassigned Robots Within Communication Range of cseed  
Receive the Auction Announcement. 

 
 

When an unassigned robot receives an auction announcement it 

immediately tests to see whether or not it can detect the auctioneer with its sensors 

[Fig. 15, lines 1-6]. Detection in this context refers to the ability to discern the range 

and bearing. The identification of another robot can be accomplished by many 

methods. One of the methods explored by Mead et al. [19] include the use of a multi-

colored “face” that uniquely identifies an individual agent. If the unassigned robot 

receiving the auction announcement can detect the auctioneer, it will then determine 
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the range and bearing of the auctioneer relative to itself. The problem of finding the 

range to another robot is one that has been explored by Heil [13] via the use of a 

“trilaterative localization system for small mobile robots in swarms.” Therefore, per 

the previous assumptions, it is taken that the unassigned robot receiving the auction 

announcement is capable of detecting the range and bearing of the auctioneer. 

Utilizing the sensor data describing the range and bearing of the 

auctioneer, the bidder may prepare a bid for the formation-relative position being 

auctioned pj represented as B(pj) = d [Fig. 15, lines 4-6]. The bid is the distance d 

from the bidder, as calculated by the path planning method employed by the 

individual robot preparing the bid, to the position being auctioned (pj). In order to 

calculate the distance factor d, the bidder must utilize the state of the auctioneer si 

to calculate the distance to the position being auctioned. This is not readily 

obtainable by means of the sensor suite due to the fact that any detectable object 

would not currently occupy the position being auctioned. In order  
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Fig. 20: Finding the Euclidean Vector Between the Bidder and the Formation-
Relative Position Being Auctioned vpbidder→pj

. 
 

to calculate the Euclidean vector from the bidder to the formation-relative position 

being auctioned vpbidder→pj
, which is unknown, the bidder must add the two known 

Euclidean vectors vpbidder→pi
 and vpi→pj

. This vector addition is illustrated in [Fig. 20] 

above. 

 The distance factor d will be determined by finding the magnitude of the 

vector between the bidder and the formation-relative position up for auction pj 

represented by ||vpbidder→pj
||. The bid is then composed by the bidder and sent by a 

direct message to the auctioneer [Fig. 21]. 
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Fig. 21: Unassigned Robots Submit Bids to the Auctioneer. 
 
 

 Once the auction timer of the auctioneer has reached zero the auctioneer 

will no longer accept incoming bids [Fig. 15, lines 4-8]. Any bids received after this 

point will be dropped without notification to the sender. The auctioneer collects the 

received bids and search them for the minimum bid [Fig. 15, lines 11,12]. By 

selecting the minimum bid the auctioneer insures that the bidder closest to the 

formation-relative position, with some consideration for the weights in the bid 

function, will be chosen.  

 After the auctioneer has selected the appropriate bid, the winning bidder 

is notified [Fig. 15, line 13]. A new cell cj will be generated [Fig. 15, lines 10-12] that 
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the winning bidder will now occupy [Fig. 22]. 

 

Fig. 22: cj is created with an initial translational error equal to the original d of cj. 

 
The new cell cj will now have a neighborhood containing ci and will have a Γ exactly 

equal to vpbidder→pj
 and will begin operating exactly as any other cell in the automaton 

[Fig. 22]. This implies that cj will now begin moving in order to cause the condition 

! " 0 to be true. However, once cj is created, the push auction cycle is completed. 

 Once cj has achieved ! " 0 and the other conditions for auctioning are 

met, cj may hold an auction of its own in order to fill the empty formation-relative 

position to the left of it. See the end result of the push method auction in [Fig. 23] 

below. 
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Fig. 23: The collection of robots after the completion of one push auction. 

 
Insertion Auction Method 

 The insertion auction method reverses the roles of cells and unassigned 

robots in the push auction method and casts the unassigned robots as auctioneers of 

their services to the cells, which act as bidders. As unassigned robots conclude 

auctions, they become cells and are inserted into the formation, taking the 

formation-relative position of the winning bidder. 

 In order to explain the insertion auction algorithm an example is 

provided. Using the same example as before, the goal is a formation with a function 

of f(x) = 0, which is a horizontal line, with cseed as the seed cell [Fig. 24].  
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Fig. 24: Example of a Formation With a Function of f(x) = 0. 

 
This example also contains a collection of unassigned robots (r0, r1, r2, r3) scattered 

randomly about the location of cseed.  

Insertion Auction Algorithm 
  

/* Process Running on Unassigned Robot */ 
 /* Determine if an auction should be held, if so announce it */ 
1 broadcast(A(rj)) 
2 ta := COUNTDOWN_TIME 
 /* Accept bids and decrement auction timer */ 
3 while ta > 0 do 
4         if incoming_message(B(rj)) then 
5                  enqueue(bidqueue,B(rj)) 
6         ta = ta – 1 
7 end 
 /* If no bids received, restart */ 
8 if size(bidqueue)=0 then exit 
 /* Sort received bids, select lowest, announce winner */ 
9 sort_ascending(bidqueue) 
10 bw := front(bidqueue) 
11 broadcast(ri, bw->ID) 
12 transform_robot_to_cell(self, T(ci)) 
 /* At this point, ri becomes a cell */ 

 
 /* Processes Running on Cell */ 
1 while front(msgqueue) ! A() do 
2         get_messages(msgqueue) 
3         foreach A()! msgqueue do 
4                   if distance_to(A()) < anearest then  
5                          ri := A()->FROM_ID 
6                 end  
7          end 
8 end 
9 broadcast(B(ri)) 

Figure 25: The Insertion Auction Algorithm. 
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Fig. 26: An automaton containing one cell cseed and a collection of unassigned robots 
begins the insertion auction example. 

 
 

 Insertion auctions may begin once there is at least one cell. This implies 

that the cell is the sole member of a formation with a formation definition. As 

previously discussed, this single cell must be the seed cseed. Once the unassigned 

robots detect the presence of a cell, they will each begin holding auctions by 

transmitting auction announcements [Fig 25, line 1, Fig. 27]. Similar to the cells in 

the push auction, the unassigned robots have a countdown timer that determines the 

length of time that the auction will be open [Fig. 25, lines 3-7].  
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Fig. 27: The unassigned robots broadcast auction announcements. 

 
 When a cell receives an auction announcement it will check to see if it can 

detect the range and bearing of the auctioneer [Fig. 25, line 4]. The cell will then 

select the announcement originating from the nearest auctioneer and prepare a bid 

to return to this auctioneer. The bid function for a cell in an insertion auction is 

B(rauctioneer) = d [Fig. 25, line 9, Fig. 28]. The cell will only bid on the nearest auction 

since it is desirable to minimize the number of messages sent and bidding on 

auctions further away than the nearest is an activity not likely to yield efficient 

behaviors. 
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Fig. 28: The cell cseed proffers a bid to r1. 

 
 The auctioneer collects bids until the countdown timer has reached zero 

and the auction is closed [Fig. 25, lines 3-7]. If the auctioneer has received no bids, 

the auction is closed and the insertion auction cycle for that auctioneer is completed 

[Fig. 25, line 8]. If there were bids received, the auctioneer will now resolve the 

auction by selecting the lowest bid from the received bids [Fig. 25, lines 9-12].  

 At this point the resolution of the insertion auction diverges between the 

special case of cseed winning the auction and any other cell winning the auction. If cseed 

has won the auction, the auctioneer will move to the formation-relative position to 

the right or left of the seed, depending on whether or not one of those positions is 
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open. If both positions are taken, then cseed will select a side to send the auctioneer 

to, based on the direction that has fewer cells [Fig. 29]. In the event that both 

directions have the same number of cells, cseed will choose a direction at random. 

 

Fig. 29 a: cseed wins an insertion auction from r0 b: the new cell is inserted to the 
left of cseed. 

 

 In [Fig. 29] the example of cseed winning an insertion auction while also 

having a full neighborhood results in c2 becoming a neighbor of c4 and breaking its 

previous neighbor relation with cseed. The new cell c4 becomes a neighbor of c2 and 

cseed. 

 When a cell other than the seed wins an insertion auction, the winner will 

give the new cell its previous formation-relative position and will move one radius 
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away from the seed along the function on which the auction occurred. Any cell that 

is situated such that the new cell is between it and cseed along the formation function, 

will add one radius to its formation-relative position, moving it further from cseed. In 

the above example [Fig. 29], if c2 had won the auction, the auction would have been 

resolved in an identical way.  
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CHAPTER IV 

IMPLEMENTATION 

 
Software 

In order to evaluate the push and insertion auction methods, the 

simulator built by Mead [19] was extended to allow auction based formation 

initialization. Mead's simulator was built in c++, compiled for the Windows XP 

operating system, utilizing the OpenGL graphics library.  Mead's code for this work 

was ported to compile in GCC on the GNU/Linux operating system with the X 

server windowing subsystem and OpenGL.  

In order to allow for pipelining of trial runs for data collection, the 

simulator’s existing facilities for parsing command line arguments was extended to 

cover the new parameters introduced by the addition of auctioning to the simulator. 

In addition to command line parsing, the simulator was extended in order to collect 

and dump pertinent data to files in the current working directory.  

A series of Perl scripts was developed in order to manage the pipelining of 

the trial run process. The primary script contains a range of parameters that the 

script maps to runs of the simulator. At the completion of a run, the script create a 

new directory in the ./data directory, which is named based on the parameters used 

to run the simulator, and move all of the associated output files to that directory. 



46 

 

Screenshots 

 

Fig. 28: The Initial State of the Simulator Upon Startup. 50 Unassigned Robots Are 
Scattered Around the 0,0 Global Coordinate No More Than a Distance of 1.0 From 

the Center, Located at the Center of the Window. 
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Fig. 29: A Formation Phase Transitioning Via the Push Auction Algorithm. 
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Fig. 30: A Phase Transition in Progress Using the Insertion Auction Algorithm. 
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Fig. 31: A Phase Transition Using the Insertion Auction, Near the Convergence 
Point. 
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Fig. 32: A Fully Phase Transitioned Formation, Converged at a Linear 
Formation. 

 

Restrictions 

 There are several restrictions on the two auction methods that have been 

adopted for this implementation in order to limit the scope of this work. While the 
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algorithms remain as general as possible, this implementation has focused on showing 

the differences between the two auction methods. 

The CATALST [19] control architecture has support for multi-function 

formations. Formations that are defined by multiple functions greatly increase the 

complexity of the proposed auction algorithms. However, this work is currently 

limited to single-function formations. 

This implementation of the push auction algorithm has been limited to 

one auction at a time per cell. In a single-function formation the conditions in which 

a cell may have the opportunity to hold simultaneous auctions is limited to a 

formation with one cell, the seed cseed. This restriction limits the possibility of 

confusion over which bids were transmitted for which auction. 

The agents in this simulation are treated as zero dimensional points and 

have no provision for obstacle avoidance or collision detection. This was restriction 

results in much simpler path planning for the agents; something that is beyond the 

scope of this work. 
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CHAPTER V 

RESULTS AND ANALYSIS 

Results 

 The method used to evaluate the two distributed auction algorithms 

begins with generating randomly chosen starting positions for the initial unassigned 

robots. This is accomplished by means of a random point generator program written 

in c++ and compiled in GCC. The program is run in a loop where it generates two 

independent random floating-point numbers between -1.0 and 1.0. This provides an 

(x,y) pair that is then tested for distance to (0,0), the center of the viewport. If the 

distance exceeds 1.0, then the pair is thrown out and the loop comes around again. If 

the pair is within a distance of 1.0 to (0,0) the pair are added to an output file. The 

first pair generated is (0.0,0.0) for each run of the random point generator. In this 

fashion 1000 pairs were generated and placed into a file. Thirty of these files were 

generated. These files were then used to seed initial robot locations in trial runs of 

the simulator. The reason for including the (0.0,0.0) point in each set of random 

starting locations was to control for differences in starting location of cseed.  

 A trial run of the simulator consists of a command line invocation of the 

simulator binary executable with the appropriate parameters passed. This process 

was automated by means of the Perl script mentioned in Chapter IV. The pipeline 

script contains a method of addressing the 30 random point files, which it 
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systematically feeds to the simulator. A second Perl script was created in order to 

parse the various results of each run into a digest for compilation into tables. 

 The parameters iterated on by the pipeline were formation function, 

number of robots, auction method, and trial number. Formation function was limited 

to four options: linear, chevron, parabolic, and sine wave. There were three options 

for number of robots: 10, 50, and 100 robots. The auction method parameter was 

varied between push method and insertion method auctions.  

 Two additional auction methods were added as a control for the trials. 

The first, random push, is identical to the push auction method in every way save 

for the selection of the winning bidder. Rather than sort the bids for the lowest, a 

random number is chosen from 0 to the highest index of the received bid queue. The 

bid located at the index indicated by that random number is chosen as the winner. 

Along the total distance traveled parameters, this method replicates the behavior of 

the pre-assigned neighbor method. 

 The second additional auction method, random insertion, was created as a 

control for the insertion method. This auction method is the same as the insertion 

method except for the winning bid selection. As with the random push method, the 

random insertion method has an auctioneer randomly select a winner rather than 

finding the lowest bid. 

A total of 1440 trial runs were performed, that being the product of 30 
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trials across 4 methods, 4 formation functions [Fig. 33], and 3 initial amounts of 

robots: 10, 50, 100. 

 

Fig. 33: Formation Functions Chosen For Trial Runs a) f(x)=0  b) f(x)=-|x|  c) 
f(x)=x2  d) f(x)=sin(x) 

 

 The results generated by the 1440 trial runs of the simulator were 

averaged across the 30 trials per configuration of formation function, auction 

method, and number of robots. Tables 1, 2, and 3 show each of those 48 
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configurations described in terms of total time to converge, average time to converge 

per agent, total distance traveled, average distance traveled per agent, total 

messages sent, average messages sent per agent, and messages sent per turn.  

Robots Auction Type Total Time to 
Converge 

Avg. Time to 
Converge/Agent 

Insertion 135.18 6.27 
Random Insertion 139.11 6.27 

Push 397.39 89.35 
10 

Random Push 386.07 123.63 
Insertion 383.61 33.26 

Random Insertion 440.36 33.58 
Push 2786.62 718.25 

50 

Random Push 3629.89 1320.88 
Insertion 764.53 67.82 

Random Insertion 841.18 68.03 
Push 10695.04 2884.51 

100 

Random Push 12788.04 4398.83 
Table 1: Trial Runs, Total Time to Converge and Avg. Time to Converge 

Per Agent, Both Measured In Time Steps 
 
 

Robots Auction Type Total Distance 
Traveled 

Avg. Distance 
Traveled/Agent 

Insertion 6.57 0.66 
Random Insertion 6.70 0.67 

Push 5.20 0.52 
10 

Random Push 5.99 0.60 
Insertion 77.44 1.55 

Random Insertion 85.43 1.71 
Push 45.84 0.92 

50 

Random Push 62.13 1.24 
Insertion 284.63 2.85 

Random Insertion 306.39 3.06 
Push 185.78 1.86 

100 

Random Push 224.19 2.24 
Table 2: Trial Runs, Total Distance Traveled and Avg. Distance Traveled Per 

Agent, Both Measured In Terms of 33.33 Robot Radii Per Distance Unit 
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Robots Auction Type Total Messages 
Sent 

Avg. Messages 
Sent / Agent 

Avg. Messages 
Sent / Step 

Insertion 2373.57 237.36 17.61 
Random Ins. 2445.63 244.56 17.63 

Push 5420.32 533.60 13.59 
10 

Random Push 4533.15 453.32 11.75 
Insertion 35713.19 714.26 93.17 

Random Ins. 41249.09 824.98 93.73 
Push 202608.48 4046.96 72.67 

50 

Random Push 224941.66 4498.83 61.94 
Insertion 143427.59 1434.28 187.63 

Random Ins. 158596.99 1585.97 188.63 
Push 1545750.11 15457.50 144.53 

100 

Random Push 1657400.65 16574.01 129.57 
Table 3: Trial Runs, Total Messages Sent, Avg. Messages Sent Per Agent, Avg. 

Messages Sent Per Step 
  

 It is also insightful to see data from a particular trial run over the course 

of the run. The data presented in [Fig. 32] are from two simulator trial runs. One is 

from a push method run with 50 robots in a linear formation and the other is from 

an insertion method run with 50 robots in a linear formation. The x-axis measures 

time steps and the y-axis measures total error in the formation. The total error for 

the formation is determined by summing the magnitudes of the translational error 

vectors at each time step. The area under the graph for each run represents the total 

distance traveled [Fig. 32]. 
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Fig. 34: Total Error in the Formation for Push (solid) and Insertion (dotted). 
 

Analysis 

 The results showed a significant divergence between the two methods as 

implemented. The first parameter of comparison is total time to converge. This is 

the amount of time steps from the transmission of the formation definition to the 

seed cell until the period of quiescence. For the purpose of evaluating this project, 

the term quiescence is applied to the condition in which there are no unassigned 

robots and the sum of the magnitudes of the translational error vectors of all cells in 

the formation is near zero for five consecutive time steps. Once quiescence is reached, 
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the simulator automatically stops itself and dumps the gathered data. 

 The total time to converge for the insertion method was consistently 

quicker than the push method. This can be shown in the ratio of the time steps to 

converge for insertion vs. push across 10, 50, and 100 robots: 0.34, 0.14, and 0.07. It 

is clear that as the number of robots increases, the parallel nature of the insertion 

method dominates the two-by-two nature of the push method. The average time to 

converge tells a similar story with the ratios of average time to converge for insertion 

to push for 10, 50, and 100 robots being 0.06, 0.05, and 0.02. Again, the performance 

of the insertion method with respect to the push method only improves as more 

robots are added and the parallel nature of the insertion method is exploited further.  

 The total distance traveled metric tells a different story, however. The 

ratios of total distance traveled for insertion vs. push method for 10, 50, and 100 

robots were 1.26, 1.69, and 1.53.  This implies that the push method is superior at 

minimizing the total distance traveled. For many applications, this factor will be 

more important than the total time to converge, since it represents energy costs. For 

space based solar power satellites, this factor alone is enough to recommend the push 

method over the insertion method. Satellites have limited fuel supply, and as such, 

minimizing the overall distance traveled is vastly more important than time to 

converge.  

 The final metric to be considered is that of messages sent per time step. 
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While data were collected for total messages sent and average messages sent, the 

measure of messages sent per time step is a more accurate view of the congestion 

caused by messaging during the phase transition process. The ratios of messages sent 

per time step for insertion vs. push method on 10, 50, and 100 robots were 1.50, 

1.28, and 1.30. By this measure, the push method uses fewer messages per time step 

than the insertion method. 

 The results of comparisons between the two auction methods and their 

random counterparts illustrate a few useful points. The 10 robot random trials 

tended to be indistinguishable from the push and insertion method auctions. Across 

the 50 and 100 robot trials, the benefit from the auction methods above randomly 

choosing bids ranged from 10-25%. 

Algorithm Analysis 

 In the analysis of the two auction algorithms, the variable n is assigned 

the number of robots. Since any computations done by individual agents will be 

dominated by the computation of the overall system, the computation of agents is 

not considered in this analysis. The key aspect of this analysis is the number of 

messages required to obtain a result. 

Push Auction Method 

 In order to find the complexity of messaging in the push auction method 

with respect to the number of robots, the O(n), the example from Chapter III will 
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help to illustrate the generalized approach. The example begins with a total of n 

agents; one of which has been designated as cseed. Randomly scattered robots (n-1) 

surround this formation of one. At this point cseed will hold two auctions. The first 

auction will produce one message for the auction announcement, and worst case of 

(n-1) bids, and then one message to announce the winner of the auction. This 

produces (n-1+2) or (n+1) messages. The second auction, which will be held by cseed, 

can be thought of in the same terms as the first, since there are no guarantees in the 

order of auctions. Thus, we say that the two auctions within a radius of 1 from cseed 

require, in the worst case, 2(n+1) messages. Each of the two cells now neighboring 

cseed will hold auctions that will have a worst case of 2(n-1)-2 messages. The final 

term (-2) represents two fewer bids received from the unassigned robots, which now 

number (n-3). When considered across the entire operation of the algorithm, the 

description of the number of messages is calculated as (n - 1)[(n – 1) - ( n / 2)]. The 

first (n – 1) factor represents the total number of auctions. The second factor 

represents the number of bids received, in the worst case. The (n / 2) term 

represents the worst-case number of bids for each half of the formation. This term 

assumes that each formation will be balanced. It is conceivable that n/2 agents could 

join the formation on one side of cseed before a single agent joins the other side. 

  When (n - 1)[(n – 1) - ( n / 2)] is simplified, the result is (n2/2)-(3n/2)+1. 

So in the final analysis of the push auction method, the (n2) term dominates, and the 



61 

 

complexity of messaging in order to organize n robots into a formation is determined 

to be O(n) = n2. 

Insertion Auction Method 

 The analysis for the insertion method is is quite similar to the push 

method. Again, there are n agents to begin the scenario. One has been designated as 

cseed. At this point, the remaining (n-1) unassigned robots will each announce an 

auction, generating (n-1) messages. As cseed receives these messages, it determines 

which is nearest and responds with a bid, generating one message. The auctioneer, 

an unassigned robot, will then announce cseed as the winner, generating one more 

message. The insertion auction held will generate (n+1) messages. As the number of 

cells increases, the number of auction announcements will decrease, but the number 

of bids will increase. Thus, the total number of messages in order to converge n 

agents is determined by (n-1)(n+1) or (n2-1). Again, since the n2 term dominates the 

constant term, it is said the complexity of the insertion method with respect to 

messaging is O(n) = n2. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

 The data collected support several conclusions. The primary conclusion of 

this work is to distinguish the benefits and uses of both the push method and the 

insertion method for initializing formations of mobile robots.  

 The data support the conclusion that both auction methods are 

generalizable to many and varied formation functions. The trials tested four 

formation functions: f(x)=0, f(x)=-|x|, f(x)=x2, f(x)=sin(x). Each one of these 

performed similarly under all trial runs. While it was observed that f(x)=sin(x) 

consistently converged faster, this difference was no more than 10% faster. It is 

observed that the sine function provided a shorter total distance to travel for each 

agent by packing more agents closer to the (0,0) point. 

 The data support the conclusion that when considering metrics regarding 

time to converge, the insertion method is superior, and improves its performance 

over that of the push method as the number of robots in the system is increased. 

This is a result of the parallel nature of the insertion method. This implies that 

applications that are time sensitive may wish to consider the insertion method. This 

may apply exclusively to terrestrial systems where refueling from outside the system 

is a viable option. Such time sensitive systems may include reconnaissance and urban 
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search and rescue. 

 Further, the data support the conclusion that along the metric of 

efficiency, total distance traveled, the push method is superior in each case. The 

nature of satellites as self-contained systems in the vacuum of space renders this 

metric particularly applicable to considerations involving satellite systems. Another 

consideration for the push method is the two-by-two nature of the initialization 

process. This may be of concern when applying formation initialization methods to 

large groups of expensive and or delicate robots. While the insertion method allows 

for much faster convergence, it places all robots in motion in parallel that has the 

potential to yield many more robot-to-robot collisions or collision avoidance 

behavior. While the simulator treats all robots as zero dimensional points, this is 

obviously not the case in the real world. The robots will need to maneuver to avoid 

one another as they travel towards their positions in the formation. 

Future Work 

Communication Model 

 The topic-based publish/subscribe model is proposed as a means to 

facilitate communications between groups of cells/unassigned robots. The 

publish/subscribe paradigm allows a distributed group of agents to send (i.e. 

publish) and receive (i.e. subscribe) various types of information regarding select 

topics of interest. This allows state information to be passed among neighbors, while 
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still allowing broadcast messages to nearby agents. A topic is addressed with a 

unique identifier, which, for our purposes, is a formation-relative position pj. We 

write the topic identified by this formation-relative position as: 

T(pj) = { pj, sj} Eq. 2 

This communications model is particularly useful when using multi-function 

formations. As pointed out by Sujit and Beard [26], there may be cases when two 

agents wish to auction the same resource. This is especially a problem when those 

two agents are not neighboring one another and for this reason would not normally 

have contact with one another. The publish/subscribe model provides a framework 

upon which to extend the two auction algorithms of this work in order to alleviate 

some of the issues that arise as a result of having multiple-function formations. 

Cells As Bidders in the Push Auction Algorithm 

In the push auction method it has been suggested that cells could also 

serve as bidders. There are two conditions that determine whether cells would proffer 

bids based on auction announcements received. First, the bidding cell’s neighborhood 

must not be full (n < nmax). Second, the distance from the formation-relative position 

of the bidder pbidder to the seed pseed, represented as ||pbidder-pseed||, must be less than the 

distance from the formation-relative position of the position being auctioned pj to 

pseed, represented ||pj–pseed|| [18]. 
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In order to properly account for the effects of cells bidding in push 

auctions, it is reasonable to add a term to the existing bid function. An altered bid 

function for a cell in a push auction is: 

B(pj) = d + X n 

 

Eq. 3 

The first term consists of the distance factor d. The second term consists of the 

number of current neighbors n (for an unassigned robot this would always be zero) 

weighted by a relation cost modifier X [18]. The relation cost modifier represents the 

cost of breaking an existing neighbor relationship. The higher the value of X the 

harder it would be for a cell to win an auction. There is no conceivable case when a 

cell could have zero neighbors and bid in an auction because the only occasion when 

a cell would have zero neighbors is when it is the seed. In this case, the seed would 

be the only cell in the formation and there could be no auctions that originated from 

a cell other than itself. Cells are disallowed from bidding in their own auctions. 

Energy Cost Modifier 

The energy cost modifier is a coefficient that modifies the distance factor 

d in order to account for difficulties in the path of the agent that may not be 

accounted for in the distance alone [Eq 3]. 

B(pj) = E d + X n 

 

Eq. 3 

Such difficulties may include rough terrain that requires a slower approach. 
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Seed Selection and Phase Transition 

 In this work, an auction-based method has been implemented in order to 

facilitate a phase transition of a swarm of robots to a formation of robots. This 

formation initialization method has been implemented and tested on a subset of the 

many possible single-dimensional formation definitions, though the phase transition 

method is applicable to any valid formation definition.  The implemented method 

requires that a seed robot be known.  At this point, it does not matter whether the 

seed is selected by the human operators or by a seed election algorithm run by the 

robots themselves, though seed choice is expected to have an effect on the overall 

performance of the swarm to formation phase transition.  A method that allows the 

swarm to autonomously and in a distributed manner select a seed robot, would, it is 

expected, greatly increase the effectiveness of the auction process. A key goal to 

consider when implementing a seed election, is finding that robot that is currently 

located in such a way that it would minimize the time and fuel spent, total distance 

traveled, during the phase transition. 

Multi-Function Formations 

 The proposed auction algorithms have been evaluated only with respect to 

single function formations. However, as Mead [19] discussed at length, multi-function 

formations can be implemented and these would also, conceivably benefit from 
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auction initialization. The topic-based publish/subscribe communication model could 

provide an invaluable tool in the effort to coordinate auctions among neighbors 

wishing to fill the same neighboring formation-relative position. 

 Among the two auction methods, the insertion method is specifically 

applicable to multi-function formations. A possible consequence of multi-function 

formations is that of isolating agents inside the bounds of the formation without 

including those agents in the formation itself. If the initial swarm/collection were 

dense enough, it is plausible that a formation could form and leave a pocket of 

agents such that joining the formation would be made more difficult by being 

surrounded by agents already in the formation. The insertion auction method, which 

causes unassigned robots to hold auctions and cells to bid on those auctions, provides 

a solution to this issue. The nearest cells to the isolated group of unassigned robots 

would win the auctions and those unassigned robots would join the formation at the 

nearest formation-relative positions.  

Formation Repair 

 In the event of robot failure, it may be desirable for robots with 

established positions in the formation to break free and rejoin in a new formation-

relative position. Including a term in the weighted sum used to calculate the bid can 

control this behavior. This term would be a multiplier to weight the number of 

preexisting relations to be broken if the bid were accepted, as discussed in the Cells 
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As Bidders in the Push Auction Method section above.  The formation repair 

function would likely be initiated upon confirmation of loss of communications with 

neighbors.  The neighbors of the lost robot would then send an auction notice for a 

robot to fill the lost robot’s formation-relative position 

Formation Obstacle Avoidance 

 The phase transition metaphor suggests a method for allowing avoidance 

of obstacles.  As cells at the highest radius from the cseed encounter an obstacle, they 

may loosen their bonds to their neighbors, similar to solid matter melting into liquid 

matter. For a widely spaced formation encountering a relatively small obstacle, 

perhaps something no more than twice as the diameter of the robot, the neighbor 

bonds may be loosened but not broken, allowing the robots in the path of the 

obstacle to shuffle out of the way.  For tighter formations or larger obstacles, it may 

be necessary to melt local portions of the formation, breaking or temporarily ignoring 

relations with neighbor robots in order to flow out of the way of the obstacle.  Once 

the robot determines itself to have passed the influence of the obstacle, it would 

either re-activate its temporarily ignored relations or begin bidding for open slots in 

the formation. Robots that have melted or sublimated would position themselves by 

reverting to Reynold's rules of swarming [10]. If the entire formation must be melted 

in order to facilitate obstacle avoidance, then the phase transition method may be 

employed once again to precipitate the formation from the swarm of robots.   
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Robots Auction Type Formation Shape Total Time to Converge Avg. Time to Converge 

Line 135.55 6.28 
Chevron 136.17 6.27 
Parabola 135.73 6.27 

insertion 

Sine 133.27 6.27 
Line 142.79 6.28 
Chevron 134.60 6.27 
Parabola 139.03 6.27 

random insertion 

Sine 140.00 6.27 
Line 348.40 89.47 
Chevron 349.57 89.80 
Parabola 432.93 89.13 

push 

Sine 458.67 89.00 
Line 384.30 125.20 
Chevron 382.47 121.57 
Parabola 393.03 121.83 

10 

random push 

Sine 384.47 125.93 
Line 393.45 33.24 
Chevron 405.00 33.40 
Parabola 385.87 33.23 

insertion 

Sine 350.13 33.17 
Line 448.69 33.59 
Chevron 466.17 33.53 
Parabola 455.60 33.57 

random insertion 

Sine 391.00 33.63 
Line 2818.40 753.67 
Chevron 2868.50 750.03 
Parabola 3086.70 744.30 

push 

Sine 2372.87 625.00 
Line 3766.23 1348.17 
Chevron 3799.57 1371.40 
Parabola 3710.10 1348.70 

50 

random push 

Sine 3243.67 1215.23 
Line 808.52 67.76 
Chevron 775.17 67.83 
Parabola 784.13 67.97 

insertion 

Sine 690.30 67.73 
Line 851.72 68.07 
Chevron 849.40 68.13 
Parabola 869.57 68.03 

random Insertion 

Sine 794.03 67.90 
Line 11014.30 3026.40 
Chevron 11216.44 3052.56 
Parabola 11668.70 3069.80 

push 

Sine 8880.70 2389.30 
Line 13417.07 4591.30 
Chevron 13344.37 4559.17 
Parabola 12990.17 4462.43 

100 

random push 

Sine 11400.57 3982.43 
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Robots Auction Type Formation Shape Total Distance Traveled Avg. Distance Traveled 

Line 6.61 0.66 
Chevron 6.65 0.67 
Parabola 6.60 0.66 

insertion 

Sine 6.40 0.64 
Line 6.82 0.68 
Chevron 6.63 0.66 
Parabola 6.61 0.66 

random insertion 

Sine 6.76 0.68 
Line 5.16 0.52 
Chevron 5.20 0.52 
Parabola 5.27 0.53 

push 

Sine 5.16 0.51 
Line 6.01 0.60 
Chevron 5.96 0.60 
Parabola 6.05 0.61 

10 

random push 

Sine 5.94 0.59 
Line 77.91 1.56 
Chevron 81.71 1.63 
Parabola 78.06 1.56 

insertion 

Sine 72.09 1.44 
Line 86.45 1.73 
Chevron 90.63 1.81 
Parabola 88.48 1.77 

random insertion 

Sine 76.18 1.52 
Line 46.76 0.93 
Chevron 48.51 0.97 
Parabola 50.08 1.00 

push 

Sine 38.01 0.76 
Line 64.69 1.29 
Chevron 65.17 1.30 
Parabola 63.16 1.26 

50 

random push 

Sine 55.50 1.11 
Line 298.34 2.98 
Chevron 287.98 2.88 
Parabola 296.25 2.96 

insertion 

Sine 255.97 2.56 
Line 314.21 3.14 
Chevron 306.83 3.07 
Parabola 316.53 3.17 

random Insertion 

Sine 287.97 2.88 
Line 191.62 1.92 
Chevron 196.20 1.96 
Parabola 201.45 2.01 

push 

Sine 153.85 1.54 
Line 235.68 2.36 
Chevron 234.54 2.35 
Parabola 226.93 2.27 

100 

random push 

Sine 199.60 2.00 
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Robots Auction Type Formation Shape Total 
Messages Sent Avg. Messages Sent Avg. Messages Per 

Step 
Line 2380.14 238.01 17.63 
Chevron 2391.40 239.14 17.58 
Parabola 2383.57 238.36 17.66 

insertion 

Sine 2339.17 233.92 17.59 
Line 2511.97 251.20 17.69 
Chevron 2364.70 236.47 17.65 
Parabola 2444.23 244.42 17.58 

random insertion 

Sine 2461.63 246.16 17.58 
Line 4537.10 453.71 13.04 
Chevron 4551.00 455.10 13.04 
Parabola 6065.87 592.66 14.04 

push 

Sine 6527.30 632.92 14.25 
Line 4469.57 446.96 11.64 
Chevron 4510.47 451.05 11.81 
Parabola 4694.37 469.44 11.94 

10 

random push 

Sine 4458.20 445.82 11.61 
Line 36682.34 733.65 93.34 
Chevron 37803.60 756.07 93.34 
Parabola 35937.97 718.76 93.35 

insertion 

Sine 32428.83 648.58 92.65 
Line 42068.55 841.37 93.90 
Chevron 43777.27 875.55 93.94 
Parabola 42735.67 854.71 93.92 

random insertion 

Sine 36414.87 728.30 93.13 
Line 202222.67 4040.90 71.76 
Chevron 207381.73 4147.63 72.31 
Parabola 229463.73 4579.37 74.36 

push 

Sine 171365.80 3419.95 72.25 
Line 235579.27 4711.59 62.55 
Chevron 236512.47 4730.25 62.26 
Parabola 230019.20 4600.38 62.00 

50 

random push 

Sine 197655.70 3953.11 60.95 
Line 152120.97 1521.21 188.27 
Chevron 145524.97 1455.25 187.77 
Parabola 147314.77 1473.15 187.90 

insertion 

Sine 128749.67 1287.50 186.59 
Line 160641.38 1606.41 188.77 
Chevron 160238.47 1602.38 188.74 
Parabola 164216.43 1642.16 188.97 

random Insertion 

Sine 149291.67 1492.92 188.02 
Line 1580608.50 15806.07 143.51 
Chevron 1615358.44 16153.59 144.02 
Parabola 1701480.20 17014.81 145.82 

push 

Sine 1285553.30 12855.52 144.77 
Line 1743463.53 17434.64 129.94 
Chevron 1735497.70 17354.99 130.06 
Parabola 1684675.50 16846.76 129.69 

100 

random push 

Sine 1465965.87 14659.66 128.59 
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randc.cpp 
//This c++ program generates random x,y coordinates  
//for use in seeding the simulator 

 
#include <fstream> 
#include <stdlib.h> 
#include <time.h> 
#include <stdio.h> 
#include <string> 
#include <cmath> 
 
using namespace std; 
 
float frand(const float min = 0.0f, const float max = 1.0f) 
{ 
     return min + (max - min) * float(rand()) / float(RAND_MAX); 
}  
 
bool distance_ok(float x, float y) 
{ 
    bool answer = false; 
    float thing = sqrt((x*x)+(y*y)); 
    answer = thing <= 1.0; 
    return answer; 
} 
 
 
int get_sign() 
{ 
    int answer; 
    if(frand()>0.5) 
    { 
        answer = 1; 
    } else { 
        answer = -1; 
    } 
    return answer; 
} 
 
int main(int argc, char * argv[]) 
{ 
    int num = atoi(argv[1]); 
    string output = argv[2]; 
    srand(time(NULL)); 
    ofstream stuff; 
    stuff.open(output.c_str()); 



78 

 

    for(int i=0;i<num;i++) 
    { 
        int sign; 
        if(frand()>0.5) 
        { 
            sign = 1; 
        } else { 
            sign = -1; 
        } 
        if(i<2) 
        { 
            sign = 0; 
        } 
        float x=2.0,y=2.0; 
        if(i==0) 
        { 
            x = y = 0.0; 
        } else { 
            while(!distance_ok(x,y)) 
            { 
                x = frand()*get_sign(); 
                y = frand()*get_sign(); 
            } 
        } 
        stuff << x << endl; 
        stuff << y << endl; 
    } 
    stuff.close(); 
    sleep(2); 
    return 0; 
} 
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runSim.pl 
//This Perl script makes up the trial run pipeline 

 
 

#!/usr/bin/perl 
use File::Copy; 
 
my $simulator = "~/git/simulator/Simulator"; 
my $seed_location = "~/git/simulator/support/seeds/random_xy_seeds_"; 
my $storage_location = "~/git/simulator/data"; 
my $output_dir = "~/git/simulator"; 
my $stdout_file = " > " . $output_dir . "/stdout.out"; 
my $trials = 30; 
 
#save_data(1); 
 
my @formation_types = (0,4,6,9); 
 
my @nums_of_robots = (10,50,100); 
 
my @push_or_insertion = ('push','insertion', 'rpush','rinsertion'); 
 
my $total_runs = $trials * scalar(@formation_types) * scalar(@num_robots); 
 
print "Beginning a run of $total_runs trials.\n"; 
 
for my $seed (1 .. $trials){ 
    for my $formation_type (@formation_types){ 
        for my $num_robots (@nums_of_robots){ 
            for my $auction_type (@push_or_insertion){ 
                my $type = ''; 
                if ($auction_type eq 'insertion'){ 
                    $type = "-i -e 99999"; 
                } elsif ($auction_type eq 'rpush'){ 
      $type = "-rpush"; 
  } elsif ($auction_type eq 'rinsertion'){ 
      $type = "-rinsertion" 
   } 
                my $sim_call = $simulator . " -t 1 -s " . $seed_location . $seed . ".txt -f 
". $formation_type . " -n " . $num_robots . " " . $type . $stdout_file; 
                print "Calling sim on trial $seed \n"; 
                print "using: $sim_call\n"; 
                unless(system($sim_call)==0){ 
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                    print "sim_call = " . $sim_call . "\n"; 
                    die "sim did not exit properly."; 
                } 
                save_data($seed,$formation_type,$num_robots,$auction_type); 
             } 
        } 
    } 
} 
 
sub save_data { 
    my @stuff = @_; 
    $seed = $stuff[0]; 
    $formation_type = $stuff[1]; 
    $num_robots = $stuff[2]; 
    $auction_type = $stuff[3]; 
    print "Storing data for trial " .$seed . ".\n"; 
    my $storage_dir = $storage_location . "/".$auction_type."_run_" . $seed . 
"_formation-type_" . $formation_type . "_num-robots_". $num_robots; 
    unless(not -d $storage_dir){ 
        die "storage_dir already exists at " . $storage_dir; 
    } 
    unless(mkdir($storage_dir)){ 
        die "mkdir failed... trying " . $storage_dir; 
    } 
    my $mv = "mv *.out " . $storage_dir; 
    unless(system($mv)==0){ 
        print "copy command was ".$mv."\n"; 
        die "data failed to copy for trial ".$seed; 
    } 
} 
 

  


