

Distributed Auction-Based Initialization

of Mobile Robot Formations

by Rob Long, Bachelor of Science

A Thesis Submitted in Partial
Fulfillment of the Requirements
for the Master of Science Degree

Department of Computer Science
in the Graduate School

Southern Illinois University Edwardsville
Edwardsville, Illinois

August, 2010

ii

ABSTRACT

DISTRIBUTED AUCTION BASED INITIALIZATION
OF MOBILE ROBOT FORMATIONS

by

Rob Long

Chairperson: Dr. Jerry B. Weinberg

 The field of multi-robot coordination, specifically robot formation control,

is rapidly expanding, with many applications: reconnaissance, urban search and

rescue, surveying, sensor networks, and exploration. One of the most compelling

applications considered is that of space-based solar power collection, in which,

satellites are placed in outer-space in order to harvest sunlight directly, before it is

filtered by the earth’s atmosphere. As Bekey et al [5] have suggested, an excellent

solution to the problem of building such solar collectors is that of multi-robot

formations. Mead et al [19] have begun the work of describing a method to fully

address this concept. This project addresses an issue raised in Mead’s work: how to

initialize the formation of robots from an unorganized swarm.

This work explores two distributed auction-based methods to

autonomously initialize and reorganize the network structure of a formation of

mobile robots. The push auction method casts the members of the formation as

auctioneers and unassigned robots as bidders on neighboring positions within the

formation. Unassigned robots become members of the formation as they win auctions

and get pushed onto the endpoints of the formation. The insertion auction method

reverses the roles and casts the unassigned robots as auctioneers and the members of

the formation as bidders with unassigned robots being inserted into the formation in

the position of the winning bidder.

iii

The two methods were implemented in simulation. Experiments varying

the size and shape of the formation were conducted on both methods. The results

were evaluated with regards to several parameters: time to converge, average time

for a robot to join the formation, total distance traveled, distance traveled per agent,

total messages sent, messages sent per agent, and messages sent per time step.

iv

ACKNOWLEDGEMENTS

Be it acknowledged that I wish to thank the following:

• Dr. Jerry B. Weinberg, an excellent computer scientist, a gifted teacher, and a
wily administrator. Your inexhaustible ability to read and re-read my run-on
sentences and sleep-deprived gibbering is remarkable.

v

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS... iv

LIST OF FIGURES... vii

LIST OF TABLES...x

Chapter

 I. INTRODUCTION AND SIGNIFICANCE.. 1

 Problem Statement .. 1
 Formation Control ... 2
 Phase Transition Metaphor.. 5
 Purpose of the Project ... 7

 II. CONTEXT, BACKGROUND, AND LITERATURE REVIEW............... 8

 Previous Work on Swarms and Formations .. 8
 Swarms... 9
 Swarms vs. Formations .. 10
 Formations ... 11
 The CATALST Approach to Formations..12
 Other Approaches to Formations ..15
 Previous Work on Distributed Auctions..19
 Problems With Distributed Auctions...19
 Other Approaches to Auction-Based Formation Initialization23

 III. DISTRIBUTED AUCTION-BASED INITIALIZATION OF

FORMATIONS OF MOBILE ROBOTS...25

 Assumptions ..25
 Push Auction Method..27
 Insertion Auction Method..39

vi

 IV. IMPLEMENTATION..45

 Software...45
 Screenshots ..46
 Restrictions..50

 V. ANALYSIS AND RESULTS ...52

 Results ...52
 Analysis ...57
 Algorithm Analysis ..59
 Push Auction Method ..59
 Insertion Auction Method ..59

 VI. CONCLUSIONS AND FUTURE WORK...62

 Conclusions ..62
 Future Work..63
 Communication Model ...63
 Cells As Bidders in the Push Auction Method...........................64
 Energy Cost Modifier ...65
 Seed Selection and Phase Transition..66
 Multi-Function Formations ..66
 Formation Repair ...67
 Formation Obstacle Avoidance ..68

 REFERENCES ...69

 APPENDICES ..72

 A. Trial Run Data ...73
 B. Code..76

vii

viii

LIST OF FIGURES

Figure Page

1. An Illustration of ESA's Darwin ... 1

2. A Parabolic Single Function Formation.. 3

3. Deployment of a Formation From a Delivery Vehicle................................... 4

4. Seven Taxonomic Axes.. 8

5. Swarm Steering Behaviors... 10

6. Left – a Swarm, School of Fish; Right – a Formation, Flock of Geese........ 11

7. Illustration of the Problems Encountered Using a World-Space Cellular
Automaton: (a) Robot Not Located Inside Any Single Cell; (b)
Automaton is Bounded; (c) Automaton Boundaries are Wrapped,
Which Doesn't Reflect Reality; (d) Inter-Robot Collisions Occur. 12

8. A Single Function Robot-Space Automaton.. 14

9. An Example of a Folded 1-Dimensional Formation and Required
Function to Calculate the Friend Angle. The Numbers at the Nodes
Represent the Id's of the Members of the Formation, With 4 Being
the Conductor. ... 17

10. Two Dimensional Formation With Three Formation Definitions 17

11. A) Desired Shape of a Hexagonal Lattice formation, B) Actual Shape
Resulting From 3 Formation Definitions, Implemented as One-
Dimensional CA's in the CATALST method. ... 18

12. Three Auctions Reference the Same Position.. 20

13. Three Cases in Which Ambiguities Can Arise .. 21

14. Square Lattice Overlapping Auction Problem... 22

ix

15. Example of a Formation With a Function of f(x) = 0 29

16. A Collection of Four Robots Around Formation Containing a Single Cell . 30

17. No Restrictions on Γ Results in a Longer Path for ri 31

18. The Unassigned Robots Within Communication Range of cseed Receive
the Auction Announcement ... 33

19. Finding the Euclidean Vector Between the Bidder and the Formation-

Relative Position Being Auctioned vpbidder→pj.. 35

20. Unassigned Robots Submit Bids to the Auctioneer..................................... 36

21. cj is Created With an Initial Translational Error Equal to the
Original d of cj ... 37

22. The Collection of Robots After the Completion of One Push Auction 38

23. Example of a Formation With a Function of f(x) = 0 39

24. An Automaton Containing One Cell cseed and a Collection of Unassigned
Robots Begins the Insertion Auction Example .. 41

25. The Unassigned Robots Broadcast Auction Announcements 42

26. The Cell cseed Proffers a Bid to r1 ... 43

27. a) cseed Wins an Insertion Auction From r0 b) the New Cell is Inserted
to the Left of cseed ... 44

28. The Initial State of the Simulator Upon Startup .. 47

29. A Formation Phase Transitioning Via the Push Auction Algorithm 48

30. A Phase Transition in Progress Using the Insertion Auction Algorithm 49

31. A Phase Transition Using the Insertion Auction, Near Convergence.......... 50

x

32. A fully phase transitioned formation, converged at a linear formation 51

33. Formation Functions Chosen For Trial Runs a) f(x)=0 b) f(x)=-|x| c)
f(x)=x2 d) f(x)=sin(x)... 54

34. Total Error in the Formation for Push (solid) and Insertion (dotted). 56

xi

LIST OF TABLES

Table Page

1. Push Auction Algorithm ... 28

2. The Insertion Auction Algorithm.. 40

3. Trial Runs, Total Time to Converge and Avg. Time to Converge 53

4. Trial Runs, Total Distance Traveled and Avg. Distance Traveled 54

5. Trial Runs, Total Messages Send, Avg. Messages Sent, Avg. Messages
Per Step ... 54

1

CHAPTER I

INTRODUCTION AND SIGNIFICANCE

Problem Statement

 The field of mobile robotics, particularly formations of and interactions

among mobile robots, is a growing area of study. Proposed applications for large

formations of mobile robots are numerous already and include many domains: search

and rescue, battlefield reconnaissance, exploration and survey, and adaptive

structures. Some proposals call for formations of robotic satellites, specifically space-

based solar power collection [5] and sparse aperture telescopes like NASA's

Terrestrial Planet Finder [2] and the ESA's Darwin [9; Fig. 1].

Fig.1: An Illustration of ESA's Darwin [9]

2

Such applications call for large amounts of homogeneous mobile robotic satellites to

maintain a fixed formation, maneuver and maintain formation, and exhibit fault-

tolerance such that the total disabling of an individual agent can occur without

affecting the function of system as a whole.

Formation Control

 Solutions to the problem of command and control of a formation of robots

fall into two main categories. The first approach, a top down, hierarchical approach,

can be implemented as either a system consisting only of mobile robots, where one

robot is assigned as a leader and issues orders to the other members of the

formation, or as a group of robots controlled by a central planner with a view of all

the robots, which then issues commands to control all the robots. This approach is

an intuitive solution to the problem, yet it presents some serious drawbacks that

reduce overall resilience and performance. The leader must have a representation of

all the agents in formation and calculate destinations for all agents during a

formation maneuver. This represents a large amount of computation as the number

of agents increases and introduces a possibly dangerous amount of lag time between

sensor input and reaction. The top down approach is also subject to a single point

of failure; that point being the lead agent or central controller. If the leader or

controller of the formation is disabled or malfunctions in some way, the entire

formation can be lost due to lack of communication or faulty orders issued to the

3

formation.

 The second type of solution is the bottom up approach, where decision-

making is devolved from the central controller to the individual agents. Treating the

formation as a collection of individual agents has several advantages. First, the

computation of formation maneuvering is naturally distributed across the entire

formation. For example, Mead's solution [19] presents the individual agents as cells

in an n-dimensional cellular automaton.

Fig. 2: A Parabolic Single Function Formation [20]

Each agent need only be aware of its location and orientation plus the state,

location, and orientation of its cellular neighbors in order to calculate its new

location and orientation, rather than requiring one agent to be aware of the location

and state of each agent in the formation. A second advantage over top down

solutions is the lack of a single point of failure. Since the formation has no leader, it

4

is not subject to loss of function resulting from the loss of the controller or leader.

 While there have been a number of methods for maintaining robots in

formation, there has been very little work done in coordinating the transformation of

a swarm of robots into a formation. Methods such as Mead [19] and Fredslund and

Mataric [10] assume that in a collection of robots the organization of robots into

neighborhoods is already known, so negotiating a positional relationship between a

robot and its neighbors can be done immediately. However, this is not practical for

most applications. Consider for example, the Space Shuttle releasing a swarm of

robots in orbit that must form an array for collecting solar power.

Fig 3: Deployment of a Formation from a Delivery Vehicle

5

The robots must first determine which among the swarm are their neighbors before

they can negotiate a relationship. Developing an algorithm to dynamically form

neighborhoods is a necessary step to allow a swarm to become a formation.

Phase Transition Metaphor

 The focus of this work has been the development of a method for

efficiently transitioning from a swarm to a formation. This transition will be

referred to as a phase transition [23] since it has many parallels to the phase

transitions observed in matter. For example, it is useful to think of a group of mobile

robots with no particular programming for interaction with each other, aside from

collision avoidance, as similar to matter in a gaseous state. That is, the volume and

shape the robots take on, when taken as a collection, is determined by their

surroundings. Robots traveling in a swarm are similar to matter in the liquid phase,

since they have a fixed volume, but no fixed shape. A swarm will assume the shape

of the boundaries of its surroundings but will have a fixed overall volume. Robots

traveling in formation are similar to matter in the solid phase. Robots in formation

resemble crystalline formations, with fixed volume and fixed shape. Robot formations

may also have a repeating internal structure, which is situated in a repeating lattice.

 In this work methods for initialization of a formation are explored using

distributed auction algorithms. Auctions are typically used to solve resource

6

allocation problems, as in the “Contract Net Protocol” described by Smith [22] and in

the work of Gerkey and Mataric [11]. Auctions provide a method of allocating

resources, held by sellers, to agents that require those resources, the buyers. In the

terminology of auctions, the seller makes use of an auctioneer, possibly the seller

itself, and the buyer places bids on the items, which the auctioneer presents, to the

sellers. An open call auction is one in which all of the bids proffered are known to all

other bidders. A distributed auction is conducted by some group of sellers and

buyers, usually assuming that all participants are trustworthy, in which all bids are

issued and the auction settled without the aid of a central organizer. In the work of

Gradwell and Padget [12], distributed auctions optimized for buyers are found to

“increase the total number of items sold, cause a greater number of bidder's

requirements to be met, and resulting run times are more consistent.” A distributed

auction algorithm may also be applicable to other formation problems, such as

formation repair due to loss or disabling of some subset of the robots or re-forming a

formation after obstacle avoidance or possibly merging two previously independent

robot formations.

 In Mead's [19] solution for control of large formations of robots, a “seed” is

required to receive instructions and act as a catalyst for initiating orders. The seed

does not directly relay orders to the rest of the formation, but rather, adjusts itself

to the desired position and orientation, which causes its neighboring robots to adjust

7

their position and orientation to match, thus propagating the change across the

entire formation. As part of the initial formation, a robot needs to be identified as

the seed of the formation. One approach is to have a “Seed Election” that would

enable a formation to select a new seed agent autonomously. A second approach is to

allow the operator of the agents to select a seed at will. Any method for selecting a

seed should consider minimizing the amount of maneuvering resulting from future

position or orientation changes. This method must also seek to minimize the number

of vertexes, when considering robots as nodes and a link to a neighbor as a vertex, in

order to ensure the quickest propagation time for changes in position or orientation.

Purpose of the Project

 The purpose of this project is to explore distributed autonomous

algorithms for transforming a swarm of robots into an organized formation of robots.

The project will build on top of Mead’s [19] formation algorithm, CATALST, to

create a distributed, auction-based method for establishing neighborhood

relationships between homogeneous robots that define the formation. Parameters

that will be used to evaluate the methods are total time to converge, average time to

converge, total distance traveled, average distance traveled, total messages send,

average messages sent, messages sent per time step, and generality of achieving

different formations.

8

CHAPTER II

CONTEXT, BACKGROUND, AND LITERATURE REVIEW

Previous Work on Swarms and Formations

 In the study of multiagent systems there are many approaches to

regulating the interactions of agents; specifically, physically instantiated agents like

mobile robots. Dudek, Jenkin, and Milios in [8] have proposed a useful taxonomy of

Multiagent Systems of mobile robots. A swarm is defined as a “number of smaller,

simpler robots”, this in comparison with a single more complex robot meant to

achieve a goal such as interplanetary exploration, [8]. Dudek et al [8] define a group

of seven axes along which may be located any swarm or collective of mobile robots,

depending upon the capabilities and makeup of the swarm [Fig. 4].

Fig. 4: Seven Taxonomic Axes [8]

9

Swarms

These axes provide a framework within which the features of a group of

mobile robots may be described. The first axis, Collective Size, is one area in which

the techniques explored in this paper and those of Mead [19] differ from much of the

existing work. In Fredslund and Mataric's [10] approach to formations, the largest

formation attempted with physical robots was 4, with the largest simulated

formation attempted being 10 robots. It is unclear from the paper [10] whether the

method would scale well to larger numbers of robots. In Atay and Bayazit's [1]

description of an “Emergent Task Allocation” method, no physical implementation

was attempted, but the largest number of robots attempted in simulation was 30.

Their method has a complexity that is limited by k, the number of neighboring

robots to exchange information with, and the number of targets being tracked. The

maximum number of robots supported by this method greatly depends upon the

mission parameters. While their emergent task allocation greatly out-performs the

centralized global optimization approach, it still took as long as 16 seconds to arrive

at a solution for a single time-step in a simulation involving 20 robots tracking 10

targets [1]. In comparison to these implementations, the Space Solar Power project

will require a formation of robots on the order of 103 robots [5]. This increase of two

orders of magnitude will overwhelm these approaches by requiring too much time to

calculate solutions.

10

Swarms vs Formations

 It is important at this point to differentiate between a swarm and a

formation. Mead [19] describes a swarm as “a massive collection that moves with no

group organization”. A formation, on the other hand, is defined as similar to a

swarm, but maintaining some global structure [19]. This global structure can be

defined as an extra frame of reference in which the member robots are situated.

Formations have an extra frame of reference, the formation-relative position, which

refers to the relative position of a robot within the formation. Swarm robots are

limited to a global frame and individual robot frame.

 To make a clear distinction between swarms and formations, a natural

example of a swarm is a school of fish. The individual members of the school have

no fixed relationship to any of the other members. The school undulates and

changes size and shape as it maneuvers, with individuals changing position relative

to one another. In Reynolds' [22] seminal work on swarms, he demonstrates that a

simple set of rules governing and individual's positional relationship with its

neighbors can attain overall swarm behavior [Fig.5].

Fig. 5: Swarm Steering Behaviors [22].

11

 However, it is useful to draw a distinction between swarms and

formations. Where a natural example of swarm may be found in a school of fish, an

example of a formation in nature is found in a “V” shaped flock of migratory birds.

Such natural formations differentiate themselves from swarms in that any two

individuals will maintain a relatively constant relationship to one another, with

respect to alignment and cohesion [22], as the formation moves and maneuvers. The

overall shape of the formation remains fixed despite changes in direction.

Fig. 6: Left – a Swarm, School of Fish; Right – a Formation, Flock of Geese

Formations

 Work on mobile robot formations has focused on methods for maintaining

formation relative positioning [10, 16, 17, 19, 20, 23, 25, 27]. Mead [19] has shown

that a Cellular Automaton may be used to regulate an individual robot's behavior

with respect to its neighbors, producing order as an emergent property among the

group. Individual behaviors are determined by the desired outcome, that is, which

formation is communicated to the seed robot. The seed orients itself to the proper

12

global position and heading as specified by the human operators, then those robots

in the seed's immediate neighborhood orient themselves based on the current

formation, to the seed. A key innovation of Mead [19] is the use of a “Robot Space”

automaton in place of a “World Space” automaton.

The CATALST Approach to Formations

 The World Space automaton presumes that the space in which the robots

exist is gridded off into cells. These are the cells of the automaton, and the states of

these cells are binary, either containing a robot or not. As Mead [19] points out, this

model leads to some problems when applied to physical robots [Fig. 7].

Fig. 7: Illustration of the Problems Encountered Using a World-Space Cellular Automaton:
(a) Robot Not Located Inside Any Single Cell; (b) Automaton is Bounded; (c) Automaton
Boundaries are Wrapped, Which Doesn't Reflect Reality; (d) Inter-Robot Collisions Occur

[19]

13

An assumption implicit in the world space model of cellular automata robot control

is that a robot must occupy one and only one cell at a time. This assumption is

likely to be tested immediately upon deployment. Some amount of error is

unavoidable, and will lead to robots overlapping cell boundaries over time,

presenting a hazard to other robots and distorting the formation. This assumption,

coupled with the fact that the cells must cover a finite area from which the robots

cannot leave, means that the world space model is quite fragile. The biggest issue

with the world space view of applying cellular automata to controlling formations of

mobile robots is the implicit requirement that there be a single system, with

knowledge of all local conditions and all locations of the robots, which manages the

automaton. The member robots could themselves carry out the necessary processing

to determine the state of the cell they currently occupy, but in a system where space

itself is divided into cells, processing must also be done for the empty cells. This

rules out a non-hierarchical approach.

 The “Robot Space” or “Application Space” solution proposed by Mead, et

al [19], models the robots themselves as the cells and the formation definition

determines the distances and angles between the members of the formation [Fig. 8].

14

Fig. 8: A One-Dimensional Robot-Space Automaton [19]

Thus, this solution addresses the problem of requiring a single “all seeing” system to

process the state of each cell and issue orders to the robots. The robot-space

solution effectively distributes the management of the cellular automaton to each

individual in the formation. This eliminates a large amount of communication as

well. The robot-space solution also eliminates the problem of a limited grid size and

is more tolerant of robot performance in the physical world in that it does not fall

apart if the robot does not happen to be within one discrete gridded off portion of

the world as known to a centralized controller. In terms of [8]'s axes, [19]'s solution

would be a finite state automaton, along the Processing Ability axis.

 The inter-agent communication required by the robot-space automaton is

limited to a few key parameters. These parameters are summed up in the definition

of a state, si. Mead et al. [19] define state formally as:

 si = { p, rdes, ract, Θ, Γ, t} Eq.1 [19]

15

The state si is that of the cell ci, in a one-dimensional automaton. The

variable p stands for the position of the cell within the formation, or the formation-

relative position, rdes represents the desired relations with neighboring cells, ract

represents the actual relationships with all neighboring cells, Θ represents the

rotational error, Γ represents the translational error, with t representing the time

step. The neighborhood of a cell ci in a one-dimensional automaton can be defined

as the set of the states {si-1, si, si+1}. This requires a robot to transmit this

information at most twice, once to each neighbor.

Other Approaches to Formations

 Sawada et al. [23] developed a method to control conference room tables

with the goal of organizing them for a dynamic schedule of various events. This

method utilizes an overhead camera and infrared LED’s in order to sense the

location and orientation of the table robots. The camera is linked to a central control

agent that calculates the paths and final locations for the table robots.

 The Distributed Flight Array of Oung et al. [21] represents a distributed

approach to formation control and initialization. The solution utilizes a large light

that shines down on all the robots that will be included in the formation. The

individuals move in order to maximize the reading on their photometers. This causes

the individual agents to gather at the center of the cone of light projected by the

light source, where the individuals physically dock with one another, making

16

connections that are held fast. The formation makes further calculations to

determine the balance of the torque generated by the main propellers of the

individual agents.

The approach of Mead et al. [19] has some advantages over previous

formation control schemes. For example, Fredslund and Mataric's [10] use a “friend

sensor” in order to track one robot in formation to which the individual has a defined

relationship. This sensor, which was implemented as a combination of a laser range

finder and a color camera, is used to recognize the presence and orientation of a

neighbor, which is determined prior to deployment. Distance and angles between

neighboring robots are determined by the formation definition. The angle between

individuals is determined by the formation definition and maintained by panning the

friend sensor so that the resulting angle between the individual and its friend is also

adjusted by the same angle. Because the follower robots must always reference a

leader, a drawback of using the physically panning sensor with a rotational range of

180 degrees in the Fredslund and Mataric [10] solution, is that “frontally concave”

formations, such as a “J” or “U” shape are not possible. This limitation could rule

out this solution for use in Space Solar Power [5] applications that may benefit from

the use of a parabolic formation. A second drawback of the Fredslund and Mataric

[9] solution is the requirement that all formation arrangements be either one

dimensional or folded variants of one-dimensional formations. [10; Fig. 9].

17

Fig. 9: An Example of a Folded 1-Dimensional Formation and Required Function
to Calculate the Friend Angle. The Numbers at the Nodes Represent the Id's of
the Members of the Formation, with 4 being the Conductor. Fredslund and
Mataric [9]

This does not preclude the formation of rectangular or hexagonal grids, but does

imply that computational requirements might be higher for individual robots and

that error in friend angle calculations or alignment will be magnified and effect the

entire formation if the error were near the “conductor” of the formation.

 A multi-function approach to formation definitions has been proposed by

Mead et al. [19, fig. 10].

Fig. 10: Multi-Function Formation with Three Formation Definitions [19]

18

The proposed method is identical to the one-dimensional approach, but with an

expansion of the formation definition F from a single function to a series of M

mathematical functions to describe the relations of neighbors in the formation.

However, if the functions [Fig.10: f1, f2, and, f3] are used to calculate the desired

relationships for this automaton, without taking further steps to adjust for two-

dimensionality, an odd “six armed” shape is created which is not what is expected

[Fig.11 B].

Fig.11: A) Desired Shape of a Hexagonal Lattice Formation, B) Actual Shape
Resulting From 3 Formation Definitions, Implemented as One-Dimensional CA's
[19]

A hexagonal lattice is the expected result [Fig.11 A], and this can be

achieved if the formation relative position used to calculate the desired relationship

to a neighbor is altered so that each individual sees itself of the center of the

formation and has a neighborhood of six robots.

19

Previous Work on Distributed Auctions

A method for coordination among groups of mobile robots that has

received much attention is that of the auction. Implementations of auctions for

mobile robot coordination take many forms, from the high-level framework for

communicating the terms of auctions, the “contract net protocol” [24] to the more

specific application of auction algorithms to the allocation of tasks to a

heterogeneous group of mobile robots [11].

 The very nature of auctions suggests the development of distributed

auction algorithms. The most basic form of parallelism in auction algorithms is that

of the simultaneous calculation of bids by buyers in the auction. In the work of

Smith [24], the benefits of a distributed solution are elaborated upon at length.

These benefits mirror those of decentralized control in many ways, including the lack

of a single point of failure, the spreading around of information so that more

information is available to more individual nodes, and the ability to route around

congestion.

Problems With Distributed Auctions

 Lagoudakis et al [15] have pointed out that many task/target allocation

cost minimization problems in mobile robotics are NP-Hard. This implies that the

auction solution, especially the Sequential Single Item (SSI) auction, which is “a

series of auctions in which a single item is auctioned off” with as many auctions as

20

there items to be auctioned, is not guaranteed to find an optimal solution [14].

Fig 12: Three Auctions Reference the Same Position.

 An issue that must be dealt with when considering the use of auctions to

initialize a formation, is the possibility that two or more auctions will exist for the

same position in the formation, but originating from two or more robots [Fig. 12].

 An approach to solving the multiple auctions of the same item, in the case

of this project, that single item being a single formation relative position, is that

explored by Sujit and Beard [26], where the authors are solving the problem of

multiple UAV's spotting the same target, and auctioning off the attack of the same

target, multiple times by different UAV's. The method explored in [26] was that of

staging a two round auction process. In the first round, any agents that have

encountered a target within their sensor range are to broadcast a validation request

to all agents inside communications range. If a UAV receives a validation request, it

evaluates that request against any targets it is detecting and also against any other

validation requests received from other agents. In this manner, even if two UAV's

21

are able to spot the same target, and happen to be unable to communicate with each

other, but both can communicate with a third UAV, the overlap in target allocation

can be detected [26].

Fig 13: Three Cases in Which Ambiguities Can Arise [26]

 In figure 13, three cases are presented by [26] in which there is ambiguity

as to which UAV should auction a target, whether or not the targets can be

validated, and how to make decisions regarding which targets to bid on. In case 1

[fig 12a], UAV's A1 and A2 can both sense target Т1. The validation round in the

auction process resolves this ambiguity by allowing A1 and A2 to report each other's

target as non-unique. The algorithm described by [26] gives ownership of the

auctioning responsibilities to the UAV with the shortest Dubins path to the target,

Dubins path being the shortest possible path on a plane between two points, along

which a nonholonomic vehicle with a known minimum turning radius can travel.

This case is similar to the situation portrayed in figure 12 between R1 and R2.

Disambiguation can be accomplished in the same manner used by [26]. In case 2 [fig

12b], A1 and A2 can detect target T1, but cannot communicate with each other, they

22

can however, communicate with a third UAV, A3. This situation is resolved in the

validation phase within A3, which will compare the validation requests from A1 and

A2 and find that both requests are the same.

In a square lattice formation of robots overlapping auctions can occur.

Additionally, robots that are not neighbors of each other will hold these auctions.

Robots not located in the same neighborhood cannot be assumed to be able to

communicate with one another outside of the broadcast framework of auction

announcement and bid communication. A solution to disambiguate the proper

auctioneer of this position must be found in order to generalize the use of auctions

across single and multi-dimensional formation definitions.

Fig.14: Square Lattice Overlapping Auction Problem.

This situation is similar to case 2, in that a robot may act as a go

between to settle the dual listing of the relationship in auctions. In case 3 [fig 13c],

23

there are three UAV's, A2, A3, and A4, which can each detect a single target, T1, T2,

and T3 respectively.

Other Approaches to Distributed Auction-Based Initialization of Robot Formations

 At the time of writing, the only published method for autonomously

initializing a formation of mobile robots, or causing a swarm of robots to undergo a

phase transition into a formation, known to the authors, is that demonstrated by

Lemay et al. [16]. The method is built around a formation control architecture,

which is very similar to that of Fredslund and Mataric [10], in that it is implemented

with a follow-the-leader method, with each robot using a sensor to track the lead

robot.

The autonomous initialization method of Lemay et al.[16] begins with

each robot executing a 360° turn in order to find via camera, which robots are within

its sensing range. The robot then places a row containing a column with the ID of

each visible neighbor on a “visibility table”. Once this phase is complete, the robots

exchange their visibility information, and new rows are added to each robot’s

visibility table, representing the robots visible to each of the other robots. Each

individual then uses this data, assumes it is the conductor, or leader, of the

formation, and does a “bounded depth-first search” looking for the most efficient

configuration [16]. Since each individual performs this search, the algorithm

implements a distributed depth-first search. When the result of the search is

24

obtained, the individuals each broadcast their best configuration, and the lowest cost

configuration is chosen and implemented [16].

 While the method employed by Lemay et al [16] does utilized distributed

auctions in order to dynamically assign neighbors in a formation of mobile robots,

the approach differs substantially from that employed in this work. While the work

of finding the best starting configuration is distributed among the individual agents,

it is still calculated in a top down method, with each agent being assigned a subset

of state-space of the problem to work on. So the choice of distributing the work of

calculation among the agents of the swarm is purely conventional. The solution

sought by this algorithm is not emergent. The problem with the [16] approach

remaining a top down method is that it requires each agent in the collection to have

knowledge of all other agents. As the number of agents increases, the demands on

computing power and space will increase greatly. Also, as the agents are distributed

further away, unified communication becomes difficult. Even with message passing,

the complexity of this solution is great.

 The solution developed for this project, which will be described in the

next chapter, is an emergent solution. While this represents an approximation of the

ideal solution, it does distribute the problem in such a way that a central control

agent cannot mimic it. The solution relies upon the interactions of multiple agents,

simulated or actual, in order for the desired outcome to emerge.

25

CHAPTER III

DISTRIBUTED AUCTION-BASED INITIALIZATION
OF FORMATIONS OF MOBILE ROBOTS

 In this chapter, two distributed auction-based methods for initializing a

formation of mobile robots are discussed. The first, the push auction method, casts

the cells of a formation as auctioneers and the unassigned robots as bidders in which

winning bidders are added to the endpoints of the formation. The second method is

the insertion auction method, which reverses the roles and casts the unassigned

robots as auctioneers and the cells of the formation as bidders in which the winning

bidder moves along the formation function and inserts the auctioneer into the

position just vacated by the bidder.

Assumptions

With both approaches there are several underlying assumptions that are

vital to understanding the environment and conditions in which the solutions

proposed are made.

 It is assumed that the collection of robots to be organized into a

formation is homogeneous. Each robot is assumed to be able to carry out the duties

expected of it at any position in the formation to an equal capacity.

 It is assumed that the robots to be organized are holonomic robots. That

is, it is assumed that each robot has the capability to move in any direction without

26

first translation through the x, y, or z axes. Rotation without translation is allowed.

This assumption has been made in order to simplify the implementation and analysis

of the auction algorithms, however, the auction methods discussed here are

generalizable to nonholonomic robots as well.

 It is assumed that each robot is capable of communicating with all other

robots within a defined radius via wireless means. For the purpose of implementing

an effective simulator, it is also assumed that communications are transmitted and

received without error, as such issues as error correction and detection are beyond

the scope of this work.

 It is assumed that each robot possesses a reactive control architecture and

the appropriate sensor suite in order to permit it to avoid obstacles independent of

the formation architecture or the initialization method.

 It is assumed that all sensors work instantaneously and without error.

Again, this is done in order to facilitate the implementation of the auction algorithm

rather than reproducing work in the area of sensor error estimation and correction,

which is beyond the scope of this work.

 While the method explored in this work are applicable to robots operating

in a three dimensions, perhaps in an underwater setting or the vacuum of space, the

simulator is currently restricted to two dimensions. The topology of the two-

dimensional space in which the simulation occurs is an infinite flat plain. Obstacles

27

introduce an interesting dynamic into both local path planning for individual robots

and for formation initialization.

 In addition to the previous assumptions about the robots, their

capabilities, and the environment in which they are located, there are some

assumptions regarding the status of the robots with respect to the CATALST [19]

architecture.

 It is assumed that the formation definition contains one function. While

the methods discussed below have been considered for use in multi-function

formation definitions, it is assumed that the formation is a single function formation.

 It is also assumed that before either of the distributed auction methods

are applied that a formation of one or more cells has already been established. This

assumption is made in order to distinguish this work from the work on seed selection

algorithms being done by Beer et al [4]. The individual agent chosen to be the seed

affects the overall efficiency of the process of initializing a formation of mobile robots

significantly, but such concerns are beyond the scope of this work.

Push Auction Method

 The push auction method casts cells as auctioneers selling their

neighboring formation-relative positions. Robots that are not yet part of the

formation are cast as bidders, and newly added robots become cells that are “pushed”

onto the ends of the formation.

28

Push Auction Algorithm

/* Process Running on Cell */
 /* Determine if an auction should be held, if so announce it */
1 if n < nmax and Γ ! 0 then
2 broadcast(A(pj))
3 ta := COUNTDOWN_TIME
 /* Accept bids and decrement auction timer */
4 while ta > 0 do
5 if front(incoming_messages) = B(pj) then
6 enqueue(bidqueue,B(pj))
7 ta := ta – 1
8 End
9 End
 /* If no bids received, restart */
10 if size(bidqueue)=0 then exit
 /* Sort received bids, select lowest, announce winner */
11 sort_ascending(bidqueue)
12 bw := front(bidqueue)
13 broadcast(pj, state(bw->ID))
 /* At this point, winning bidder becomes a cell */

 /* Processes Running on Unassigned Robot */
 /* Auction Watcher */
1 while front(msgqueue) ! A() do
2 get_messages(msgqueue)
3 end
4 foreach A(pj) ! msgqueue do
5 broadcast(B(pj))
6 End
 /* Transformation Watcher */
7 while front(msgqueue) ! {pj, state(self->ID)} do
8 get_messages(msgqueue)
9 End
10 transform_robot_to_cell(pj sj)
11 kill auction_watcher process
12 kill transformation_watcher process

Fig. 15: Push Auction Algorithm

The push auction algorithm is described in [Fig. 15] above. This algorithm

is divided up into two key portions: the process to be run by a cell and the process

29

to be run by an unassigned robot. It is essential to the distributed nature of this

algorithm that both processes run concurrently. Communication between the

processes is accomplished by means of the publish/subscribe method discussed in

Chapter IV: Implementation.

It is assumed that a seed cell has already been selected, and that the

formation definition has been transmitted to this cell. This example uses the function

of f(x) = 0 as the formation goal, which is a horizontal line, with cseed as the seed cell

[Fig. 16].

Fig. 16: Example of a Formation With a Function of f(x) = 0.

 Initially the robots are in a swarm, a collection of four robots (r0, r1, r2,

r3) scattered in a random distribution, with a robot, cseed designated as the seed [Fig.

17]. The push auction method begins when the seed receives a signal from a

controller outside the formation to begin. The seed takes this signal to be a

formation change request that establishes the parameters for the formation. Once

this is received, the seed calculates the desired positions of its neighbors. The sole

member in the formation begins the auction process if the requirements for

auctioning are met [Fig. 15, line 1].

30

Fig. 17: Four Robots Around a Formation Containing a Single Cell cseed

In the push auction method there are several prerequisites that must be

met before the cell in question may initiate an auction. First, a cell must have an

incomplete neighborhood (n < nmax)[Fig. 15, line 1]. In the example of a single

function formation definition this means that a cell must have fewer than two

neighbors. In the case of the seed, cseed has zero neighbors as it is the sole member of

the formation. In the example, cseed has no neighbors, and can auction off the

formation-relative positions to the left and the right. Second, the cell in question ci

must have a translational error ! magnitude that is less than some arbitrary amount

set by the formation controller. In order to minimize the distance traveled, disallow

31

auctioning until the condition ! " 0 is true. While this rule applies to all cells

including cseed it does not limit the seed quite as much since the seed will only ever

have a translational error above zero when the formation controller has issued new

global coordinates for the formation to move to and cseed has yet to arrive at that new

location.

If there is no restriction on the ! of a cell wishing to initiate an auction,

there will be a chain reaction of auctions before the robots have time to move into

their new positions in the formation. This has two drawbacks vis-à-vis the push

auction algorithm. First, each auction held by a cell with a relatively high Γ will

result in bids that are based upon the current position of the cell and not the desired

position of the cell. This results in a higher total distance traveled [Fig. 18]. For

example, ri wins auction ai. At this point, ri becomes ci and if there is no restriction

on cells holding auctions until ! " 0, then the auction aj* will be held.

Fig. 18: No Restrictions on Γ Results in a Longer Path for ri.

32

The robot rj will win this auction and as it moves to take its position it becomes ci.

This new cell will be moving towards the location of ai. This will yield the much

longer dotted, curved path to aj. However, if auctions are restricted until cells have

reached a near zero Γ, then the auction aj will be held and cj will move along the

black colored path, which is a great deal shorter.

The second drawback of this chain reaction of auctions is that each robot

that is not yet a member of the formation will be moving into position once it has

been won an auction. This may not immediately seem like a problem, but it creates

a condition where many robots in motion in the same area increases the likelihood of

collisions and increases the total distance traveled by causing collision avoidance

behaviors to be activated in the various individual robots.

At this point, if cseed meets the above requirements, it will prepare an auction

announcement [Fig. 15, line 2]. An auction announcement for a push auction of the

formation-relative position pj is expressed as A(pj) = {sseed, pj } where sseed is the state

of the seed and pj is the formation-relative position up for auction [Fig. 19]. Once the

auctioneer transmits the auction announcement, a timer is set that counts down

[Fig. 15, line 3]. This timer is the amount of time that the auction will remain open.

33

Fig. 19: The Unassigned Robots Within Communication Range of cseed
Receive the Auction Announcement.

When an unassigned robot receives an auction announcement it

immediately tests to see whether or not it can detect the auctioneer with its sensors

[Fig. 15, lines 1-6]. Detection in this context refers to the ability to discern the range

and bearing. The identification of another robot can be accomplished by many

methods. One of the methods explored by Mead et al. [19] include the use of a multi-

colored “face” that uniquely identifies an individual agent. If the unassigned robot

receiving the auction announcement can detect the auctioneer, it will then determine

34

the range and bearing of the auctioneer relative to itself. The problem of finding the

range to another robot is one that has been explored by Heil [13] via the use of a

“trilaterative localization system for small mobile robots in swarms.” Therefore, per

the previous assumptions, it is taken that the unassigned robot receiving the auction

announcement is capable of detecting the range and bearing of the auctioneer.

Utilizing the sensor data describing the range and bearing of the

auctioneer, the bidder may prepare a bid for the formation-relative position being

auctioned pj represented as B(pj) = d [Fig. 15, lines 4-6]. The bid is the distance d

from the bidder, as calculated by the path planning method employed by the

individual robot preparing the bid, to the position being auctioned (pj). In order to

calculate the distance factor d, the bidder must utilize the state of the auctioneer si

to calculate the distance to the position being auctioned. This is not readily

obtainable by means of the sensor suite due to the fact that any detectable object

would not currently occupy the position being auctioned. In order

35

Fig. 20: Finding the Euclidean Vector Between the Bidder and the Formation-
Relative Position Being Auctioned vpbidder→pj

.

to calculate the Euclidean vector from the bidder to the formation-relative position

being auctioned vpbidder→pj
, which is unknown, the bidder must add the two known

Euclidean vectors vpbidder→pi
 and vpi→pj

. This vector addition is illustrated in [Fig. 20]

above.

 The distance factor d will be determined by finding the magnitude of the

vector between the bidder and the formation-relative position up for auction pj

represented by ||vpbidder→pj
||. The bid is then composed by the bidder and sent by a

direct message to the auctioneer [Fig. 21].

36

Fig. 21: Unassigned Robots Submit Bids to the Auctioneer.

 Once the auction timer of the auctioneer has reached zero the auctioneer

will no longer accept incoming bids [Fig. 15, lines 4-8]. Any bids received after this

point will be dropped without notification to the sender. The auctioneer collects the

received bids and search them for the minimum bid [Fig. 15, lines 11,12]. By

selecting the minimum bid the auctioneer insures that the bidder closest to the

formation-relative position, with some consideration for the weights in the bid

function, will be chosen.

 After the auctioneer has selected the appropriate bid, the winning bidder

is notified [Fig. 15, line 13]. A new cell cj will be generated [Fig. 15, lines 10-12] that

37

the winning bidder will now occupy [Fig. 22].

Fig. 22: cj is created with an initial translational error equal to the original d of cj.

The new cell cj will now have a neighborhood containing ci and will have a Γ exactly

equal to vpbidder→pj
 and will begin operating exactly as any other cell in the automaton

[Fig. 22]. This implies that cj will now begin moving in order to cause the condition

! " 0 to be true. However, once cj is created, the push auction cycle is completed.

 Once cj has achieved ! " 0 and the other conditions for auctioning are

met, cj may hold an auction of its own in order to fill the empty formation-relative

position to the left of it. See the end result of the push method auction in [Fig. 23]

below.

38

Fig. 23: The collection of robots after the completion of one push auction.

Insertion Auction Method

 The insertion auction method reverses the roles of cells and unassigned

robots in the push auction method and casts the unassigned robots as auctioneers of

their services to the cells, which act as bidders. As unassigned robots conclude

auctions, they become cells and are inserted into the formation, taking the

formation-relative position of the winning bidder.

 In order to explain the insertion auction algorithm an example is

provided. Using the same example as before, the goal is a formation with a function

of f(x) = 0, which is a horizontal line, with cseed as the seed cell [Fig. 24].

39

Fig. 24: Example of a Formation With a Function of f(x) = 0.

This example also contains a collection of unassigned robots (r0, r1, r2, r3) scattered

randomly about the location of cseed.

Insertion Auction Algorithm

/* Process Running on Unassigned Robot */
 /* Determine if an auction should be held, if so announce it */
1 broadcast(A(rj))
2 ta := COUNTDOWN_TIME
 /* Accept bids and decrement auction timer */
3 while ta > 0 do
4 if incoming_message(B(rj)) then
5 enqueue(bidqueue,B(rj))
6 ta = ta – 1
7 end
 /* If no bids received, restart */
8 if size(bidqueue)=0 then exit
 /* Sort received bids, select lowest, announce winner */
9 sort_ascending(bidqueue)
10 bw := front(bidqueue)
11 broadcast(ri, bw->ID)
12 transform_robot_to_cell(self, T(ci))
 /* At this point, ri becomes a cell */

 /* Processes Running on Cell */
1 while front(msgqueue) ! A() do
2 get_messages(msgqueue)
3 foreach A()! msgqueue do
4 if distance_to(A()) < anearest then
5 ri := A()->FROM_ID
6 end
7 end
8 end
9 broadcast(B(ri))

Figure 25: The Insertion Auction Algorithm.

40

Fig. 26: An automaton containing one cell cseed and a collection of unassigned robots
begins the insertion auction example.

 Insertion auctions may begin once there is at least one cell. This implies

that the cell is the sole member of a formation with a formation definition. As

previously discussed, this single cell must be the seed cseed. Once the unassigned

robots detect the presence of a cell, they will each begin holding auctions by

transmitting auction announcements [Fig 25, line 1, Fig. 27]. Similar to the cells in

the push auction, the unassigned robots have a countdown timer that determines the

length of time that the auction will be open [Fig. 25, lines 3-7].

41

Fig. 27: The unassigned robots broadcast auction announcements.

 When a cell receives an auction announcement it will check to see if it can

detect the range and bearing of the auctioneer [Fig. 25, line 4]. The cell will then

select the announcement originating from the nearest auctioneer and prepare a bid

to return to this auctioneer. The bid function for a cell in an insertion auction is

B(rauctioneer) = d [Fig. 25, line 9, Fig. 28]. The cell will only bid on the nearest auction

since it is desirable to minimize the number of messages sent and bidding on

auctions further away than the nearest is an activity not likely to yield efficient

behaviors.

42

Fig. 28: The cell cseed proffers a bid to r1.

 The auctioneer collects bids until the countdown timer has reached zero

and the auction is closed [Fig. 25, lines 3-7]. If the auctioneer has received no bids,

the auction is closed and the insertion auction cycle for that auctioneer is completed

[Fig. 25, line 8]. If there were bids received, the auctioneer will now resolve the

auction by selecting the lowest bid from the received bids [Fig. 25, lines 9-12].

 At this point the resolution of the insertion auction diverges between the

special case of cseed winning the auction and any other cell winning the auction. If cseed

has won the auction, the auctioneer will move to the formation-relative position to

the right or left of the seed, depending on whether or not one of those positions is

43

open. If both positions are taken, then cseed will select a side to send the auctioneer

to, based on the direction that has fewer cells [Fig. 29]. In the event that both

directions have the same number of cells, cseed will choose a direction at random.

Fig. 29 a: cseed wins an insertion auction from r0 b: the new cell is inserted to the
left of cseed.

 In [Fig. 29] the example of cseed winning an insertion auction while also

having a full neighborhood results in c2 becoming a neighbor of c4 and breaking its

previous neighbor relation with cseed. The new cell c4 becomes a neighbor of c2 and

cseed.

 When a cell other than the seed wins an insertion auction, the winner will

give the new cell its previous formation-relative position and will move one radius

44

away from the seed along the function on which the auction occurred. Any cell that

is situated such that the new cell is between it and cseed along the formation function,

will add one radius to its formation-relative position, moving it further from cseed. In

the above example [Fig. 29], if c2 had won the auction, the auction would have been

resolved in an identical way.

45

CHAPTER IV

IMPLEMENTATION

Software

In order to evaluate the push and insertion auction methods, the

simulator built by Mead [19] was extended to allow auction based formation

initialization. Mead's simulator was built in c++, compiled for the Windows XP

operating system, utilizing the OpenGL graphics library. Mead's code for this work

was ported to compile in GCC on the GNU/Linux operating system with the X

server windowing subsystem and OpenGL.

In order to allow for pipelining of trial runs for data collection, the

simulator’s existing facilities for parsing command line arguments was extended to

cover the new parameters introduced by the addition of auctioning to the simulator.

In addition to command line parsing, the simulator was extended in order to collect

and dump pertinent data to files in the current working directory.

A series of Perl scripts was developed in order to manage the pipelining of

the trial run process. The primary script contains a range of parameters that the

script maps to runs of the simulator. At the completion of a run, the script create a

new directory in the ./data directory, which is named based on the parameters used

to run the simulator, and move all of the associated output files to that directory.

46

Screenshots

Fig. 28: The Initial State of the Simulator Upon Startup. 50 Unassigned Robots Are
Scattered Around the 0,0 Global Coordinate No More Than a Distance of 1.0 From

the Center, Located at the Center of the Window.

47

Fig. 29: A Formation Phase Transitioning Via the Push Auction Algorithm.

48

Fig. 30: A Phase Transition in Progress Using the Insertion Auction Algorithm.

49

Fig. 31: A Phase Transition Using the Insertion Auction, Near the Convergence
Point.

50

Fig. 32: A Fully Phase Transitioned Formation, Converged at a Linear
Formation.

Restrictions

 There are several restrictions on the two auction methods that have been

adopted for this implementation in order to limit the scope of this work. While the

51

algorithms remain as general as possible, this implementation has focused on showing

the differences between the two auction methods.

The CATALST [19] control architecture has support for multi-function

formations. Formations that are defined by multiple functions greatly increase the

complexity of the proposed auction algorithms. However, this work is currently

limited to single-function formations.

This implementation of the push auction algorithm has been limited to

one auction at a time per cell. In a single-function formation the conditions in which

a cell may have the opportunity to hold simultaneous auctions is limited to a

formation with one cell, the seed cseed. This restriction limits the possibility of

confusion over which bids were transmitted for which auction.

The agents in this simulation are treated as zero dimensional points and

have no provision for obstacle avoidance or collision detection. This was restriction

results in much simpler path planning for the agents; something that is beyond the

scope of this work.

52

CHAPTER V

RESULTS AND ANALYSIS

Results

 The method used to evaluate the two distributed auction algorithms

begins with generating randomly chosen starting positions for the initial unassigned

robots. This is accomplished by means of a random point generator program written

in c++ and compiled in GCC. The program is run in a loop where it generates two

independent random floating-point numbers between -1.0 and 1.0. This provides an

(x,y) pair that is then tested for distance to (0,0), the center of the viewport. If the

distance exceeds 1.0, then the pair is thrown out and the loop comes around again. If

the pair is within a distance of 1.0 to (0,0) the pair are added to an output file. The

first pair generated is (0.0,0.0) for each run of the random point generator. In this

fashion 1000 pairs were generated and placed into a file. Thirty of these files were

generated. These files were then used to seed initial robot locations in trial runs of

the simulator. The reason for including the (0.0,0.0) point in each set of random

starting locations was to control for differences in starting location of cseed.

 A trial run of the simulator consists of a command line invocation of the

simulator binary executable with the appropriate parameters passed. This process

was automated by means of the Perl script mentioned in Chapter IV. The pipeline

script contains a method of addressing the 30 random point files, which it

53

systematically feeds to the simulator. A second Perl script was created in order to

parse the various results of each run into a digest for compilation into tables.

 The parameters iterated on by the pipeline were formation function,

number of robots, auction method, and trial number. Formation function was limited

to four options: linear, chevron, parabolic, and sine wave. There were three options

for number of robots: 10, 50, and 100 robots. The auction method parameter was

varied between push method and insertion method auctions.

 Two additional auction methods were added as a control for the trials.

The first, random push, is identical to the push auction method in every way save

for the selection of the winning bidder. Rather than sort the bids for the lowest, a

random number is chosen from 0 to the highest index of the received bid queue. The

bid located at the index indicated by that random number is chosen as the winner.

Along the total distance traveled parameters, this method replicates the behavior of

the pre-assigned neighbor method.

 The second additional auction method, random insertion, was created as a

control for the insertion method. This auction method is the same as the insertion

method except for the winning bid selection. As with the random push method, the

random insertion method has an auctioneer randomly select a winner rather than

finding the lowest bid.

A total of 1440 trial runs were performed, that being the product of 30

54

trials across 4 methods, 4 formation functions [Fig. 33], and 3 initial amounts of

robots: 10, 50, 100.

Fig. 33: Formation Functions Chosen For Trial Runs a) f(x)=0 b) f(x)=-|x| c)
f(x)=x2 d) f(x)=sin(x)

 The results generated by the 1440 trial runs of the simulator were

averaged across the 30 trials per configuration of formation function, auction

method, and number of robots. Tables 1, 2, and 3 show each of those 48

55

configurations described in terms of total time to converge, average time to converge

per agent, total distance traveled, average distance traveled per agent, total

messages sent, average messages sent per agent, and messages sent per turn.

Robots Auction Type Total Time to
Converge

Avg. Time to
Converge/Agent

Insertion 135.18 6.27
Random Insertion 139.11 6.27

Push 397.39 89.35
10

Random Push 386.07 123.63
Insertion 383.61 33.26

Random Insertion 440.36 33.58
Push 2786.62 718.25

50

Random Push 3629.89 1320.88
Insertion 764.53 67.82

Random Insertion 841.18 68.03
Push 10695.04 2884.51

100

Random Push 12788.04 4398.83
Table 1: Trial Runs, Total Time to Converge and Avg. Time to Converge

Per Agent, Both Measured In Time Steps

Robots Auction Type Total Distance
Traveled

Avg. Distance
Traveled/Agent

Insertion 6.57 0.66
Random Insertion 6.70 0.67

Push 5.20 0.52
10

Random Push 5.99 0.60
Insertion 77.44 1.55

Random Insertion 85.43 1.71
Push 45.84 0.92

50

Random Push 62.13 1.24
Insertion 284.63 2.85

Random Insertion 306.39 3.06
Push 185.78 1.86

100

Random Push 224.19 2.24
Table 2: Trial Runs, Total Distance Traveled and Avg. Distance Traveled Per

Agent, Both Measured In Terms of 33.33 Robot Radii Per Distance Unit

56

Robots Auction Type Total Messages
Sent

Avg. Messages
Sent / Agent

Avg. Messages
Sent / Step

Insertion 2373.57 237.36 17.61
Random Ins. 2445.63 244.56 17.63

Push 5420.32 533.60 13.59
10

Random Push 4533.15 453.32 11.75
Insertion 35713.19 714.26 93.17

Random Ins. 41249.09 824.98 93.73
Push 202608.48 4046.96 72.67

50

Random Push 224941.66 4498.83 61.94
Insertion 143427.59 1434.28 187.63

Random Ins. 158596.99 1585.97 188.63
Push 1545750.11 15457.50 144.53

100

Random Push 1657400.65 16574.01 129.57
Table 3: Trial Runs, Total Messages Sent, Avg. Messages Sent Per Agent, Avg.

Messages Sent Per Step

 It is also insightful to see data from a particular trial run over the course

of the run. The data presented in [Fig. 32] are from two simulator trial runs. One is

from a push method run with 50 robots in a linear formation and the other is from

an insertion method run with 50 robots in a linear formation. The x-axis measures

time steps and the y-axis measures total error in the formation. The total error for

the formation is determined by summing the magnitudes of the translational error

vectors at each time step. The area under the graph for each run represents the total

distance traveled [Fig. 32].

57

Fig. 34: Total Error in the Formation for Push (solid) and Insertion (dotted).

Analysis

 The results showed a significant divergence between the two methods as

implemented. The first parameter of comparison is total time to converge. This is

the amount of time steps from the transmission of the formation definition to the

seed cell until the period of quiescence. For the purpose of evaluating this project,

the term quiescence is applied to the condition in which there are no unassigned

robots and the sum of the magnitudes of the translational error vectors of all cells in

the formation is near zero for five consecutive time steps. Once quiescence is reached,

58

the simulator automatically stops itself and dumps the gathered data.

 The total time to converge for the insertion method was consistently

quicker than the push method. This can be shown in the ratio of the time steps to

converge for insertion vs. push across 10, 50, and 100 robots: 0.34, 0.14, and 0.07. It

is clear that as the number of robots increases, the parallel nature of the insertion

method dominates the two-by-two nature of the push method. The average time to

converge tells a similar story with the ratios of average time to converge for insertion

to push for 10, 50, and 100 robots being 0.06, 0.05, and 0.02. Again, the performance

of the insertion method with respect to the push method only improves as more

robots are added and the parallel nature of the insertion method is exploited further.

 The total distance traveled metric tells a different story, however. The

ratios of total distance traveled for insertion vs. push method for 10, 50, and 100

robots were 1.26, 1.69, and 1.53. This implies that the push method is superior at

minimizing the total distance traveled. For many applications, this factor will be

more important than the total time to converge, since it represents energy costs. For

space based solar power satellites, this factor alone is enough to recommend the push

method over the insertion method. Satellites have limited fuel supply, and as such,

minimizing the overall distance traveled is vastly more important than time to

converge.

 The final metric to be considered is that of messages sent per time step.

59

While data were collected for total messages sent and average messages sent, the

measure of messages sent per time step is a more accurate view of the congestion

caused by messaging during the phase transition process. The ratios of messages sent

per time step for insertion vs. push method on 10, 50, and 100 robots were 1.50,

1.28, and 1.30. By this measure, the push method uses fewer messages per time step

than the insertion method.

 The results of comparisons between the two auction methods and their

random counterparts illustrate a few useful points. The 10 robot random trials

tended to be indistinguishable from the push and insertion method auctions. Across

the 50 and 100 robot trials, the benefit from the auction methods above randomly

choosing bids ranged from 10-25%.

Algorithm Analysis

 In the analysis of the two auction algorithms, the variable n is assigned

the number of robots. Since any computations done by individual agents will be

dominated by the computation of the overall system, the computation of agents is

not considered in this analysis. The key aspect of this analysis is the number of

messages required to obtain a result.

Push Auction Method

 In order to find the complexity of messaging in the push auction method

with respect to the number of robots, the O(n), the example from Chapter III will

60

help to illustrate the generalized approach. The example begins with a total of n

agents; one of which has been designated as cseed. Randomly scattered robots (n-1)

surround this formation of one. At this point cseed will hold two auctions. The first

auction will produce one message for the auction announcement, and worst case of

(n-1) bids, and then one message to announce the winner of the auction. This

produces (n-1+2) or (n+1) messages. The second auction, which will be held by cseed,

can be thought of in the same terms as the first, since there are no guarantees in the

order of auctions. Thus, we say that the two auctions within a radius of 1 from cseed

require, in the worst case, 2(n+1) messages. Each of the two cells now neighboring

cseed will hold auctions that will have a worst case of 2(n-1)-2 messages. The final

term (-2) represents two fewer bids received from the unassigned robots, which now

number (n-3). When considered across the entire operation of the algorithm, the

description of the number of messages is calculated as (n - 1)[(n – 1) - (n / 2)]. The

first (n – 1) factor represents the total number of auctions. The second factor

represents the number of bids received, in the worst case. The (n / 2) term

represents the worst-case number of bids for each half of the formation. This term

assumes that each formation will be balanced. It is conceivable that n/2 agents could

join the formation on one side of cseed before a single agent joins the other side.

 When (n - 1)[(n – 1) - (n / 2)] is simplified, the result is (n2/2)-(3n/2)+1.

So in the final analysis of the push auction method, the (n2) term dominates, and the

61

complexity of messaging in order to organize n robots into a formation is determined

to be O(n) = n2.

Insertion Auction Method

 The analysis for the insertion method is is quite similar to the push

method. Again, there are n agents to begin the scenario. One has been designated as

cseed. At this point, the remaining (n-1) unassigned robots will each announce an

auction, generating (n-1) messages. As cseed receives these messages, it determines

which is nearest and responds with a bid, generating one message. The auctioneer,

an unassigned robot, will then announce cseed as the winner, generating one more

message. The insertion auction held will generate (n+1) messages. As the number of

cells increases, the number of auction announcements will decrease, but the number

of bids will increase. Thus, the total number of messages in order to converge n

agents is determined by (n-1)(n+1) or (n2-1). Again, since the n2 term dominates the

constant term, it is said the complexity of the insertion method with respect to

messaging is O(n) = n2.

62

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

Conclusions

 The data collected support several conclusions. The primary conclusion of

this work is to distinguish the benefits and uses of both the push method and the

insertion method for initializing formations of mobile robots.

 The data support the conclusion that both auction methods are

generalizable to many and varied formation functions. The trials tested four

formation functions: f(x)=0, f(x)=-|x|, f(x)=x2, f(x)=sin(x). Each one of these

performed similarly under all trial runs. While it was observed that f(x)=sin(x)

consistently converged faster, this difference was no more than 10% faster. It is

observed that the sine function provided a shorter total distance to travel for each

agent by packing more agents closer to the (0,0) point.

 The data support the conclusion that when considering metrics regarding

time to converge, the insertion method is superior, and improves its performance

over that of the push method as the number of robots in the system is increased.

This is a result of the parallel nature of the insertion method. This implies that

applications that are time sensitive may wish to consider the insertion method. This

may apply exclusively to terrestrial systems where refueling from outside the system

is a viable option. Such time sensitive systems may include reconnaissance and urban

63

search and rescue.

 Further, the data support the conclusion that along the metric of

efficiency, total distance traveled, the push method is superior in each case. The

nature of satellites as self-contained systems in the vacuum of space renders this

metric particularly applicable to considerations involving satellite systems. Another

consideration for the push method is the two-by-two nature of the initialization

process. This may be of concern when applying formation initialization methods to

large groups of expensive and or delicate robots. While the insertion method allows

for much faster convergence, it places all robots in motion in parallel that has the

potential to yield many more robot-to-robot collisions or collision avoidance

behavior. While the simulator treats all robots as zero dimensional points, this is

obviously not the case in the real world. The robots will need to maneuver to avoid

one another as they travel towards their positions in the formation.

Future Work

Communication Model

 The topic-based publish/subscribe model is proposed as a means to

facilitate communications between groups of cells/unassigned robots. The

publish/subscribe paradigm allows a distributed group of agents to send (i.e.

publish) and receive (i.e. subscribe) various types of information regarding select

topics of interest. This allows state information to be passed among neighbors, while

64

still allowing broadcast messages to nearby agents. A topic is addressed with a

unique identifier, which, for our purposes, is a formation-relative position pj. We

write the topic identified by this formation-relative position as:

T(pj) = { pj, sj} Eq. 2

This communications model is particularly useful when using multi-function

formations. As pointed out by Sujit and Beard [26], there may be cases when two

agents wish to auction the same resource. This is especially a problem when those

two agents are not neighboring one another and for this reason would not normally

have contact with one another. The publish/subscribe model provides a framework

upon which to extend the two auction algorithms of this work in order to alleviate

some of the issues that arise as a result of having multiple-function formations.

Cells As Bidders in the Push Auction Algorithm

In the push auction method it has been suggested that cells could also

serve as bidders. There are two conditions that determine whether cells would proffer

bids based on auction announcements received. First, the bidding cell’s neighborhood

must not be full (n < nmax). Second, the distance from the formation-relative position

of the bidder pbidder to the seed pseed, represented as ||pbidder-pseed||, must be less than the

distance from the formation-relative position of the position being auctioned pj to

pseed, represented ||pj–pseed|| [18].

65

In order to properly account for the effects of cells bidding in push

auctions, it is reasonable to add a term to the existing bid function. An altered bid

function for a cell in a push auction is:

B(pj) = d + X n

Eq. 3

The first term consists of the distance factor d. The second term consists of the

number of current neighbors n (for an unassigned robot this would always be zero)

weighted by a relation cost modifier X [18]. The relation cost modifier represents the

cost of breaking an existing neighbor relationship. The higher the value of X the

harder it would be for a cell to win an auction. There is no conceivable case when a

cell could have zero neighbors and bid in an auction because the only occasion when

a cell would have zero neighbors is when it is the seed. In this case, the seed would

be the only cell in the formation and there could be no auctions that originated from

a cell other than itself. Cells are disallowed from bidding in their own auctions.

Energy Cost Modifier

The energy cost modifier is a coefficient that modifies the distance factor

d in order to account for difficulties in the path of the agent that may not be

accounted for in the distance alone [Eq 3].

B(pj) = E d + X n

Eq. 3

Such difficulties may include rough terrain that requires a slower approach.

66

Seed Selection and Phase Transition

 In this work, an auction-based method has been implemented in order to

facilitate a phase transition of a swarm of robots to a formation of robots. This

formation initialization method has been implemented and tested on a subset of the

many possible single-dimensional formation definitions, though the phase transition

method is applicable to any valid formation definition. The implemented method

requires that a seed robot be known. At this point, it does not matter whether the

seed is selected by the human operators or by a seed election algorithm run by the

robots themselves, though seed choice is expected to have an effect on the overall

performance of the swarm to formation phase transition. A method that allows the

swarm to autonomously and in a distributed manner select a seed robot, would, it is

expected, greatly increase the effectiveness of the auction process. A key goal to

consider when implementing a seed election, is finding that robot that is currently

located in such a way that it would minimize the time and fuel spent, total distance

traveled, during the phase transition.

Multi-Function Formations

 The proposed auction algorithms have been evaluated only with respect to

single function formations. However, as Mead [19] discussed at length, multi-function

formations can be implemented and these would also, conceivably benefit from

67

auction initialization. The topic-based publish/subscribe communication model could

provide an invaluable tool in the effort to coordinate auctions among neighbors

wishing to fill the same neighboring formation-relative position.

 Among the two auction methods, the insertion method is specifically

applicable to multi-function formations. A possible consequence of multi-function

formations is that of isolating agents inside the bounds of the formation without

including those agents in the formation itself. If the initial swarm/collection were

dense enough, it is plausible that a formation could form and leave a pocket of

agents such that joining the formation would be made more difficult by being

surrounded by agents already in the formation. The insertion auction method, which

causes unassigned robots to hold auctions and cells to bid on those auctions, provides

a solution to this issue. The nearest cells to the isolated group of unassigned robots

would win the auctions and those unassigned robots would join the formation at the

nearest formation-relative positions.

Formation Repair

 In the event of robot failure, it may be desirable for robots with

established positions in the formation to break free and rejoin in a new formation-

relative position. Including a term in the weighted sum used to calculate the bid can

control this behavior. This term would be a multiplier to weight the number of

preexisting relations to be broken if the bid were accepted, as discussed in the Cells

68

As Bidders in the Push Auction Method section above. The formation repair

function would likely be initiated upon confirmation of loss of communications with

neighbors. The neighbors of the lost robot would then send an auction notice for a

robot to fill the lost robot’s formation-relative position

Formation Obstacle Avoidance

 The phase transition metaphor suggests a method for allowing avoidance

of obstacles. As cells at the highest radius from the cseed encounter an obstacle, they

may loosen their bonds to their neighbors, similar to solid matter melting into liquid

matter. For a widely spaced formation encountering a relatively small obstacle,

perhaps something no more than twice as the diameter of the robot, the neighbor

bonds may be loosened but not broken, allowing the robots in the path of the

obstacle to shuffle out of the way. For tighter formations or larger obstacles, it may

be necessary to melt local portions of the formation, breaking or temporarily ignoring

relations with neighbor robots in order to flow out of the way of the obstacle. Once

the robot determines itself to have passed the influence of the obstacle, it would

either re-activate its temporarily ignored relations or begin bidding for open slots in

the formation. Robots that have melted or sublimated would position themselves by

reverting to Reynold's rules of swarming [10]. If the entire formation must be melted

in order to facilitate obstacle avoidance, then the phase transition method may be

employed once again to precipitate the formation from the swarm of robots.

69

REFERENCES

[1] Atay, N., Bayazit, B. (2008), Emergent Task Allocation for Mobile Robots,
Robotics: Science and Systems III, MIT Press 2008.

[2] Aung, M et al (2004), An Overview of Formation Flying Technology
Development for the Terrestrial Planet Finder Mission, Aerospace
Conference, 2004 Proceedings, 2004 IEEE.

[3] Balch, T., Arkin, R. (1998), Behavior Based Formation Control for
Multirobot Teams, IEEE Transactions on Robotics and Automation, Vol.14,
No.6, December 1998

[4] Beer, B., Mead, R., Weinberg, J.B. (2010). A Distributed Method for
Evaluating Properties of a Robot Formation.

[5] Bekey, G., Bekey, I., Criswell, D., Friedman, G., Greenwood, D., Miller, D.,
& Will, P. (2000). Final Report of the NSF-NASA Workshop on
Autonomous Construction and Manufacturing for Space Electrical Power
Systems. 4-7 April, Arlington, Virginia.

[6] Cheng, J., Cheng, W., & Nagpal, R.(2005), Robust and Self-repairing
Formation Control for Swarms of Mobile Agents. In Proceedings of AAAI-
05, 59-64. Pittsburgh, Pennsylvania.

[7] Cunha, R., Silva, A., Loureiro, A., Ruiz, L. (2005), Simulating Large
Wireless Sensor Networks Using Cellular Automata, Proceedings of the 38th
Annual Simulation Symposium, ANSS 2005

[8] Dudek, G., Jenkin, M., Milios, E., A Taxonomy of Multirobot Systems.
“Robot Teams: From Diversity to Polymorphism” edited by Tucker Balch
and Lynne Parker, 2002 A.K. Peters, Ltd.

[9] ESA Darwin Flotilla (2002), Illustration retrieved from

[10] Fredslund, J, & Mataric, M.J. (2002), Robots in Formation Using Local
Information. The 7th International Conference on Intelligent Autonomous
Systems, Marina Del Rey, California.

[11] Gerkey, B.P., Mataric, M.J. (2002), “SOLD!: Auction Methods for

70

Multirobot Coordination.” Robotics and Automation, IEEE Transactions on,
Vol 18 Issue 5, Oct. 2002, 758-768.

[12] Gradwell, P., & Padget, J. (2007), “A Comparison of Distributed and
Centralized Agent Based Bundling Systems,” ICEC '07, August 19-22, 2007
Minneapolis, Minnesota, USA.

[13] Heil, R.(2004), “A Trilaterative Localization System For Small Mobile
Robots in Swarms.” A Thesis submitted to the department of Electrical and
Computer Engineering and the Graduate School of the University of
Wyoming. Laramie, Wyoming, August 2004.

[14] Kishimoto, A., Sturtevant, N., (2008) “Optimized Algorithms for Multi-
Agent Routing.” Proceedings of the 7th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2008), Padgham,
Parkes, Muller and Parsons(eds.), May, 12-16, 2008, Estoril, Portugal, pp.
1585-1588.

[15] Lagoudakis, M. G., Berhault, M., Koenig, S., Keskinocak, P., Kleywegt, A.,
(2004), “Simple Auctions with Performance Guarantees for Multi-Robot
Task Allocation.” Proceedings of 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Sept. 28 – Oct. 2, 2004, Sendai, Japan.

[16] Lemay, M., Michaud, F., Letourneau, D., Valin, J., Autonomous
Initialization of Robot Formations.

[17] Lewis, M., Tan, K., High Precision Formation Control of Mobile Robots
Using Virtual Structures. Autonomous Robots 4, 387-403 (1997) Kluwer
Academic Publishers, The Netherlands.

[18] Long, R., Mead, R., & Weinberg J.B. (2010). Distributed Auction-Based
Initialization of Mobile Robot Formations. Proceedings of the Twenty
Fourth AAAI Conference on Artificial Intelligence, Atlanta, Georgia, USA,
July 11-15, 2010. pp 1949-1950.

[19] Mead, R (2008), Cellular Automata for Control and Interactions of Large
Formations of Robots, A Thesis Submitted in Partial Fulfillment of the
Requirements for the Master of Science Degree, Southern Illinois University
at Edwardsville, Edwardsville, Illinois.

71

[20] Mead, R, Weinberg, J., Croxell, J. (2007), A Demonstration of a Robot
Formation Control Algorithm and Platform, 2007, AAAI

[21] Oung, R., Bourgalt, F., Donovan, M., D’Andrea, R.(2010), “The Distributed
Flight Array.” Proceedings of the 2010 IEEE Conference on Robotics and
Automation, Anchorage, Alaska, USA, May 3-8, 2010. pp. 601-607.

[22] Reynolds, C.W. (1987), Flocks, Herds, and Schools: A Distributed
Behavioral Model, in Computer Graphics, SIGGRAPH '87 Conference
Proceedings, 21(4),25-35

[23] Sawada, Y., Tsubouchi, T.(2010), “Autonomous Re-alignment of Multiple
Table Robots.” Proceedings of the 2010 IEEE Conference on Robotics and
Automation, Anchorage, Alaska, USA, May 3-8, 2010. pp. 1098-1099.

[24] Smith, R., “The Contract Net Protocol: High Level Communication and
Control in a Distributed Problem Solver,” IEEE Transactions on
Computers, Vol C-29, No. 12, 1980.

[25] Spears, W., Heil, R., Spears, D., Zarzhitsky, D., Physicomimetics for Mobile
Robot Formation. AAMAS '04, July19-23, 2004, New York , New York,
USA.

[26] Sujit, P.B., & Beard, R.(2007), “Distributed Sequential Auctions for
Multiple UAV Task Allocation.” Proceedings of the 2007 American Control
Conference, New York City, New York, USA, July 11-13, 2007.

[27] Suzuki, I., Yamashita, M., Distributed Anonymous Mobile Robots:
Formation of Geometric Patterns. 1999 Society for Industrial and Applied
Mathematics SIAM J. COMPUT. Vol. 28, No.4, pp. 1347-1363.

[28] Yamaguchi, H., Arai, T., & Beni, G. (2001),” A Distributed Control Scheme
for Multiple Robotic Vehicles to Make Group Formation”, Robotics And
Autonomous Systems, (36), 125-147

[29] Yu, C., Nagpal, R.(2010), “Biologically Inspired Control for Multi-Agent
Self-Adaptive Tasks.” Proceedings of the Twenty Fourth AAAI Conference
on Artificial Intelligence, Atlanta, Georgia, USA, July 11-15, 2010. pp. 1702-
1707.

72

APPENDIX A

DATA FROM TRIAL RUNS

73

Robots Auction Type Formation Shape Total Time to Converge Avg. Time to Converge

Line 135.55 6.28
Chevron 136.17 6.27
Parabola 135.73 6.27

insertion

Sine 133.27 6.27
Line 142.79 6.28
Chevron 134.60 6.27
Parabola 139.03 6.27

random insertion

Sine 140.00 6.27
Line 348.40 89.47
Chevron 349.57 89.80
Parabola 432.93 89.13

push

Sine 458.67 89.00
Line 384.30 125.20
Chevron 382.47 121.57
Parabola 393.03 121.83

10

random push

Sine 384.47 125.93
Line 393.45 33.24
Chevron 405.00 33.40
Parabola 385.87 33.23

insertion

Sine 350.13 33.17
Line 448.69 33.59
Chevron 466.17 33.53
Parabola 455.60 33.57

random insertion

Sine 391.00 33.63
Line 2818.40 753.67
Chevron 2868.50 750.03
Parabola 3086.70 744.30

push

Sine 2372.87 625.00
Line 3766.23 1348.17
Chevron 3799.57 1371.40
Parabola 3710.10 1348.70

50

random push

Sine 3243.67 1215.23
Line 808.52 67.76
Chevron 775.17 67.83
Parabola 784.13 67.97

insertion

Sine 690.30 67.73
Line 851.72 68.07
Chevron 849.40 68.13
Parabola 869.57 68.03

random Insertion

Sine 794.03 67.90
Line 11014.30 3026.40
Chevron 11216.44 3052.56
Parabola 11668.70 3069.80

push

Sine 8880.70 2389.30
Line 13417.07 4591.30
Chevron 13344.37 4559.17
Parabola 12990.17 4462.43

100

random push

Sine 11400.57 3982.43

74

Robots Auction Type Formation Shape Total Distance Traveled Avg. Distance Traveled

Line 6.61 0.66
Chevron 6.65 0.67
Parabola 6.60 0.66

insertion

Sine 6.40 0.64
Line 6.82 0.68
Chevron 6.63 0.66
Parabola 6.61 0.66

random insertion

Sine 6.76 0.68
Line 5.16 0.52
Chevron 5.20 0.52
Parabola 5.27 0.53

push

Sine 5.16 0.51
Line 6.01 0.60
Chevron 5.96 0.60
Parabola 6.05 0.61

10

random push

Sine 5.94 0.59
Line 77.91 1.56
Chevron 81.71 1.63
Parabola 78.06 1.56

insertion

Sine 72.09 1.44
Line 86.45 1.73
Chevron 90.63 1.81
Parabola 88.48 1.77

random insertion

Sine 76.18 1.52
Line 46.76 0.93
Chevron 48.51 0.97
Parabola 50.08 1.00

push

Sine 38.01 0.76
Line 64.69 1.29
Chevron 65.17 1.30
Parabola 63.16 1.26

50

random push

Sine 55.50 1.11
Line 298.34 2.98
Chevron 287.98 2.88
Parabola 296.25 2.96

insertion

Sine 255.97 2.56
Line 314.21 3.14
Chevron 306.83 3.07
Parabola 316.53 3.17

random Insertion

Sine 287.97 2.88
Line 191.62 1.92
Chevron 196.20 1.96
Parabola 201.45 2.01

push

Sine 153.85 1.54
Line 235.68 2.36
Chevron 234.54 2.35
Parabola 226.93 2.27

100

random push

Sine 199.60 2.00

75

Robots Auction Type Formation Shape Total
Messages Sent Avg. Messages Sent Avg. Messages Per

Step
Line 2380.14 238.01 17.63
Chevron 2391.40 239.14 17.58
Parabola 2383.57 238.36 17.66

insertion

Sine 2339.17 233.92 17.59
Line 2511.97 251.20 17.69
Chevron 2364.70 236.47 17.65
Parabola 2444.23 244.42 17.58

random insertion

Sine 2461.63 246.16 17.58
Line 4537.10 453.71 13.04
Chevron 4551.00 455.10 13.04
Parabola 6065.87 592.66 14.04

push

Sine 6527.30 632.92 14.25
Line 4469.57 446.96 11.64
Chevron 4510.47 451.05 11.81
Parabola 4694.37 469.44 11.94

10

random push

Sine 4458.20 445.82 11.61
Line 36682.34 733.65 93.34
Chevron 37803.60 756.07 93.34
Parabola 35937.97 718.76 93.35

insertion

Sine 32428.83 648.58 92.65
Line 42068.55 841.37 93.90
Chevron 43777.27 875.55 93.94
Parabola 42735.67 854.71 93.92

random insertion

Sine 36414.87 728.30 93.13
Line 202222.67 4040.90 71.76
Chevron 207381.73 4147.63 72.31
Parabola 229463.73 4579.37 74.36

push

Sine 171365.80 3419.95 72.25
Line 235579.27 4711.59 62.55
Chevron 236512.47 4730.25 62.26
Parabola 230019.20 4600.38 62.00

50

random push

Sine 197655.70 3953.11 60.95
Line 152120.97 1521.21 188.27
Chevron 145524.97 1455.25 187.77
Parabola 147314.77 1473.15 187.90

insertion

Sine 128749.67 1287.50 186.59
Line 160641.38 1606.41 188.77
Chevron 160238.47 1602.38 188.74
Parabola 164216.43 1642.16 188.97

random Insertion

Sine 149291.67 1492.92 188.02
Line 1580608.50 15806.07 143.51
Chevron 1615358.44 16153.59 144.02
Parabola 1701480.20 17014.81 145.82

push

Sine 1285553.30 12855.52 144.77
Line 1743463.53 17434.64 129.94
Chevron 1735497.70 17354.99 130.06
Parabola 1684675.50 16846.76 129.69

100

random push

Sine 1465965.87 14659.66 128.59

76

APPENDIX B

CODE

77

randc.cpp
//This c++ program generates random x,y coordinates
//for use in seeding the simulator

#include <fstream>
#include <stdlib.h>
#include <time.h>
#include <stdio.h>
#include <string>
#include <cmath>

using namespace std;

float frand(const float min = 0.0f, const float max = 1.0f)
{
 return min + (max - min) * float(rand()) / float(RAND_MAX);
}

bool distance_ok(float x, float y)
{
 bool answer = false;
 float thing = sqrt((x*x)+(y*y));
 answer = thing <= 1.0;
 return answer;
}

int get_sign()
{
 int answer;
 if(frand()>0.5)
 {
 answer = 1;
 } else {
 answer = -1;
 }
 return answer;
}

int main(int argc, char * argv[])
{
 int num = atoi(argv[1]);
 string output = argv[2];
 srand(time(NULL));
 ofstream stuff;
 stuff.open(output.c_str());

78

 for(int i=0;i<num;i++)
 {
 int sign;
 if(frand()>0.5)
 {
 sign = 1;
 } else {
 sign = -1;
 }
 if(i<2)
 {
 sign = 0;
 }
 float x=2.0,y=2.0;
 if(i==0)
 {
 x = y = 0.0;
 } else {
 while(!distance_ok(x,y))
 {
 x = frand()*get_sign();
 y = frand()*get_sign();
 }
 }
 stuff << x << endl;
 stuff << y << endl;
 }
 stuff.close();
 sleep(2);
 return 0;
}

79

runSim.pl
//This Perl script makes up the trial run pipeline

#!/usr/bin/perl
use File::Copy;

my $simulator = "~/git/simulator/Simulator";
my $seed_location = "~/git/simulator/support/seeds/random_xy_seeds_";
my $storage_location = "~/git/simulator/data";
my $output_dir = "~/git/simulator";
my $stdout_file = " > " . $output_dir . "/stdout.out";
my $trials = 30;

#save_data(1);

my @formation_types = (0,4,6,9);

my @nums_of_robots = (10,50,100);

my @push_or_insertion = ('push','insertion', 'rpush','rinsertion');

my $total_runs = $trials * scalar(@formation_types) * scalar(@num_robots);

print "Beginning a run of $total_runs trials.\n";

for my $seed (1 .. $trials){
 for my $formation_type (@formation_types){
 for my $num_robots (@nums_of_robots){
 for my $auction_type (@push_or_insertion){
 my $type = '';
 if ($auction_type eq 'insertion'){
 $type = "-i -e 99999";
 } elsif ($auction_type eq 'rpush'){
 $type = "-rpush";
 } elsif ($auction_type eq 'rinsertion'){
 $type = "-rinsertion"
 }
 my $sim_call = $simulator . " -t 1 -s " . $seed_location . $seed . ".txt -f
". $formation_type . " -n " . $num_robots . " " . $type . $stdout_file;
 print "Calling sim on trial $seed \n";
 print "using: $sim_call\n";
 unless(system($sim_call)==0){

80

 print "sim_call = " . $sim_call . "\n";
 die "sim did not exit properly.";
 }
 save_data($seed,$formation_type,$num_robots,$auction_type);
 }
 }
 }
}

sub save_data {
 my @stuff = @_;
 $seed = $stuff[0];
 $formation_type = $stuff[1];
 $num_robots = $stuff[2];
 $auction_type = $stuff[3];
 print "Storing data for trial " .$seed . ".\n";
 my $storage_dir = $storage_location . "/".$auction_type."_run_" . $seed .
"_formation-type_" . $formation_type . "_num-robots_". $num_robots;
 unless(not -d $storage_dir){
 die "storage_dir already exists at " . $storage_dir;
 }
 unless(mkdir($storage_dir)){
 die "mkdir failed... trying " . $storage_dir;
 }
 my $mv = "mv *.out " . $storage_dir;
 unless(system($mv)==0){
 print "copy command was ".$mv."\n";
 die "data failed to copy for trial ".$seed;
 }
}

