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Abstract:


The goal of this project was to use one of the Soccerbot Plus (SBP) robots owned by Southern Illinois University to control a Vectron® Blackhawk Flying Saucer (VBFS) in a hover mode.  This would be accomplished by using the SBP’s integrated video camera to watch for the position of a ball composed of two different colored hemispheres mounted on the VBFS.  The SBP would drive three servomotors connected to both of the joysticks on the controller of the VBFS.  Although the project was not completed due to the limited time of the class, much work for the project has been completed.  This includes all of the hardware and most of the mathematical model describing the position and orientation of a ball composed of two different colored hemispheres and the corrective actions that the SBP’s servomotors would have to make.  The body of this report will briefly describe the hardware used and then delve into the mathematical model. 
Introduction:
Indoor remote controlled flying toys are perhaps one of the most interesting forms of entertainment.  Learning to fly them will keep children as well as their parents captivated for hours on end.  It can take several days, or weeks, to master control of the craft and although this keeps the user occupied, this learning curve can be discouraging at first.  Of course the major problem with indoor remote controlled flying toys is that the child cannot play with other toys at the same time.  For example, children will hold a plastic toy helicopter in the air with one hand while the other hand holds a figurine ready to make a pretend parachute jump.  And while that is fun for the child, it would be even more fun if he or she could use both hands in play while the helicopter hovers in place.  The motive for this project was merely for pure science however if later successful, it could be implemented in the design of future hovering toys, or it could potentially have military applications as well (i.e. reconnaissance).  

Background:

Of course hovering machines already exist but there are two main problems in control.  If the machine is human controlled, the operator is severely tasked.  Almost all of the concentration is devoted to keeping the aircraft flying.  There is no time to devote to taking pictures or much of anything else.  On the other hand, if the machine is autonomously controlled, then the hardware, usually GPS information fed to a micro controller must be on board.  This is very costly in weight considerations.  An autonomously hovering toy or a soldier's personal mini reconnaissance aircraft would have to be made quite a bit larger to compensate for even the smallest increase in weight.  This leads to the idea of a control system not on board.  If the control is not on board, and control will be acquired by means of computer vision, then an appropriate reference point is needed.  In this project, the reference point would be a lightweight ball composed of two different colored hemispheres mounted on the aircraft.  There has been much work in detecting spheres as is evident in the soccer playing application of the SBP [1] and also in reconnaissance work [2].  The author still does not know whether this approach of detecting a sphere on a flying craft had been attempted or whether there would have been a fast enough sampling time possible for real time control, but it still seems as if the approach is a sound one.  

Materials and Methods:

Hardware:
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The main components of the project are the Vectron® Blackhawk Flying Saucer aircraft, its controller, and power converter - all are in the Vectron® Blackhawk Flying Saucer toy package shown below - left.  There is also the Soccerbot Plus, here shown below - right, three standard Futaba servos connected to the joysticks on the VBFS controller via a Lego based universal joint assembly, and a frame constructed from 1/2" Lasco® PVC pipe joints.  There is also a very light sphere connected to the VBFS aircraft as a reference point.  The sphere was actually created by taking two hemispheres of an orange and a green colored 4” Basic Poof® foam balls cut in half, hollowed out by physically tearing out very small chunks from the inside of the balls to a wall thickness of approximately ¼” and then glued together with a contact segment specifically designed for foam and also stitched together with silk suture.  The fins of the wire legs of the VBFS were removed, the wire legs were bent and cut and the ball assembly was connected to [image: image3.png]Before Adter



the top portion of the legs of the craft by a similar method of stitching with silk suture as shown in the figure to the left.  The legs had to be modified in this way to compensate for the added weight of the ball as well as to allow easy takeoff from the craft’s new base, a soup mug.  There are also two 25 W flood lights mounted on the controller assembly with a dimmer control shining directly on the flying craft to avoid the problem of a gradient angle of an illuminated sphere from a point source off axis from the viewing axis [2].  
Mathematical Model:
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If this project could have been completed, the program would have essentially scanned the viewfinder's image to look for the approximate colors of the ball.  The ball would be of two unique colors, orange and green, in the field of view and the center of the total area of orange and green would be determined as the center of the ball.  The program would also have to find several other parameters including the areas and centroids or the x and y coordinates of each of the orange and green objects in the screen.  Once this information is acquired, the first task is to find the distance or z depth of the ball from the camera.  By comparing the proportion of an image that a ball theoretically sweeps out as it gets closer to the camera at regular intervals as shown in the figure above, it was determined that the area is almost directly related to the distance by the equation on the top of the next page. 

z ≈ Constant1/√area

[image: image5.png]Tperspective



Next, the program would have to transform the x,y, and z coordinates of the total and individual orange and green objects from the perspective or spherical coordinates of the camera to global or Cartesian coordinates of the real world as shown in the figure below.  The global value of x for example is determined by the equation below.  

X = z(sin(x))
Where lowercase x,y, and z are the apparent values from the perspective image and capital X,Y, and Z are the values in global coordinates.  These coordinates are the absolute position of the ball.  The next task is to find the orientation of the ball.  This is done by relating the difference in the areas of orange and green called ∆Area shown below:

∆Area = (orange area – green area)/total area

to the inverse of the slope of the centroids of the orange and green objects called 1/slope shown below.

1/slope = (X orange – X green)/(Y orange – Y green)

The inverse slope was chosen as the relationship of choice because the actual slope of the ball in theoretical stable hovering would be near infinity and computers can loose their precision for very large numbers.  The orientation of the ball was considered to be the measure of theta, the angle swept out on the X – Z plane where 0 degrees is the vector into the camera, and phi, the angle that the ball sweeps out from its axis the Z axis.  Data was gathered by means of the CAD model shown on the next page where theta and phi vary at 15 degree increments from 0 to 90 degrees each.  The [image: image6.png]


data from the apparent area of the circles was actually plotted at 2 degree increments of phi where theta was kept constant.  The result was [image: image7.emf]0 10 20 30 40 50 60 70 80 90
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sinusoidal and the comparison of data to a theoretical sin function was plotted and is shown below.  This conclusion leads to a relationship for ∆Area, theta and phi where: 

∆Area = cos(theta)*sin(phi)

This equation is plotted where theta and phi vary from 0 to 90 degrees and is shown below - left.  Next, of the data relating 1/slope, theta and phi was plotted (not shown).  This yielded a relationship found by inspection shown below. 
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1/slope = sin(theta)*tan(phi)
If one examines these equations, one can see that these are really parametric equations and they can therefore relate ∆Area and 1/slope to each of theta and phi separately, one can get two equations where the input is ∆Area and 1/slope and the output is either theta or phi.  One should note that these equations are only useful at the unique case where the ball is at the center of the screen.  Now to relate ∆Area and 1/slope to the perspective view, data was gathered by means of the CAD model shown below where the camera is at the origin and theta and phi vary at 15 degree increments from 0 to 90 [image: image10.png]


degrees but the ball stays vertical.  For the case of ∆Area, it was determined that the only parameter of relevance was gamma or 90-phi.  And gamma has the same type of relationship to ∆Area as phi.  So, the program can simply subtract gamma from phi to know the orientation of the ball at any place along the Y axis.  For 1/slope, the relationship is not quite so simple.  It is directly related to perspective however, the description of perspective varies from reference to reference.  For example the CAD system used in these analyses, uses one vanishing point as shown below.   Some use two or three.  The theory of [image: image11.png]


perspective is limited and therefore it was not included in this algorithm.  Thus, the program would obtain 1/slope from the image and use that to deduce orientation of the ball at a general position.  Once orientation is found, the program would then assume that the craft has a unit vector in that orientation and theoretically simply add a unit vector in the opposite orientation to its flight stick controls.  That would bring the craft back to vertical position.  Now add a corrective vector based on the craft’s position to the one described above and the craft should return to the center of the field of view.  This corrective vector is given in spherical coordinates and shown on the next page. 

Phi corrective = Constant2*√(X^2+Z^2)

Theta corrective = (-(tan^(-1)(abs(X/Z)))+Constant3)@Quadrant1




 = (tan^(-1)(abs(X/Z))+Constant4)@Quadrant2

 
 = (180-(tan^(-1)(abs(X/Z)))+Constant5)@Quadrant3

 = (-(180-(tan^(-1)(abs(X/Z))))+Constant6)@Quadrant4

Magnitude corrective = Constant7*(Phi corrective)^Constant8 – Constant9 + Constant10
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This proposed corrective vector is shown below.  The final vector would then be broken down into the x,y, and z cardinal vectors which would relate directly to the servos. Thus the craft should theoretically remain in one hovering location.  A picture of the whole concept is shown below. 
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Conclusion:


This project aimed to use a small programmable robot with integrated computer vision hardware and servo control to try to keep a small flying toy in a naturally unstable hover mode by continuously scanning the robot’s field of view looking for a simple easily detectable object mounted to flying toy.  The robot would maintain control of the toy by physically driving the joysticks on the toy’s handheld controller via servos connected to specially designed linkages mounted to the joysticks.  This idea is a new one as far as the author of this report knows thus the chances of achieving true endless autonomous flight were fairly small.  As this was a fairly complicated mechanical as well as computer programming problem, the approach was to concentrate on the hardware first by acquiring and getting familiar with the SBP and its downloading software within the first two weeks and to design and build the mechanical linkages that control the one and two axis joysticks on the VBFS controller.  This was obviously way too much time spent in the hardware stage which took time away from the programming stage.  The idea seemed doable in eight weeks but now in just looking at the mathematical model, it seems better suited to a senior design project.  Perhaps if the author had more time to work on the project, it would have been more fruitful. 
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