

Push-Pull Four Channel Driver

FEATURES

- Output Current 1A Per Channel (600mA for L293D)
- Peak Output Current 2A Per Channel (1.2A for L293D)
- Inhibit Facility
- High Noise Immunity
- Separate Logic Supply
- Over-Temperature Protection

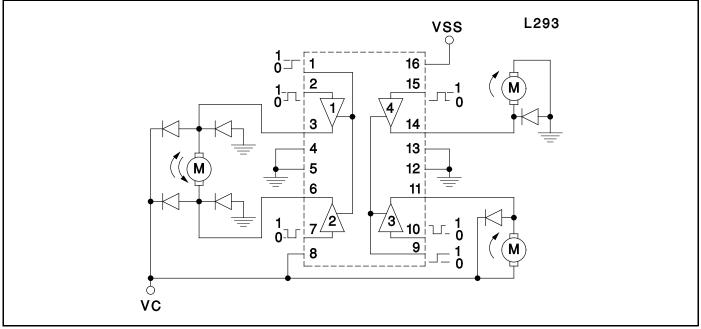
DESCRIPTION

The L293 and L293D are quad push-pull drivers capable of delivering output currents to 1A or 600mA per channel respectively. Each channel is controlled by a TTL-compatible logic input and each pair of drivers (a full bridge) is equipped with an inhibit input which turns off all four transistors. A separate supply input is provided for the logic so that it may be run off a lower voltage to reduce dissipation.

Additionally the L293D includes the output clamping diodes within the IC for complete interfacing with inductive loads.

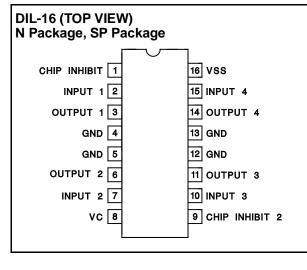
Both devices are available in 16-pin Batwing DIP packages. They are also available in Power S0IC and Hermetic DIL packages.

TRUTH TABLE


Vi	VINH*	Vo
(each channel)		
Н	Н	Н
L	Н	L
Н	L	X**
L	L	X**

*Relative to the considered channel **High output impedence

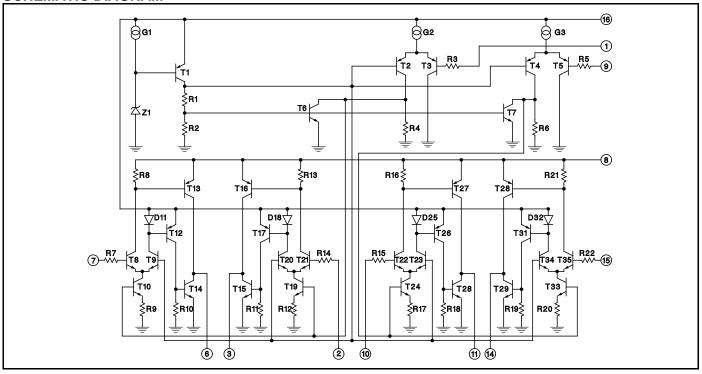
ABSOLUTE MAXIMUM RATINGS


Collector Supply Voltage, Vc. 36V Logic Supply Voltage, Vss. 36V Input Voltage, VI. 7V Inhibit Voltage, VINH. 7V Peak Output Current (Non-Repetitive), IOUT (L293) 2A
lour (L293D)
at Tground-pins = 80°C, N Batwing pkg, (Note)

BLOCK DIAGRAM

Note: Output diodes are internal in L293D.

CONNECTION DIAGRAMS



SOIC-28 (TOP VIEW) DWP Package			
CHIP INHIBIT 1	28 vss		
INPUT 12	27 INPUT 4		
OUTPUT 13	26 OUTPUT 4		
N/C 4	25 N/C		
N/C 5	24 N/C		
N/C 6	23 N/C		
GND 7	22 GND		
GND 8	21 GND		
GND 9	20 GND		
N/C 10	19 N/C		
N/C 11	18 N/C		
OUTPUT 2 12	17 OUTPUT 3		
INPUT 2 13	16 INPUT 3		
VC 14	15 CHIP INHIBIT 2		

ELECTRICAL CHARACTISTICS: (For each channel, Vc = 24V, Vss = 5V, TAMB = 25°C, unless otherwise specified; TA = TJ)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS
Collector Supply Voltage	Vc				36	V
Logic Supply Voltage	Vss		4.5		36	V
Collector Supply Current	lc	VI = L, $IO = 0$, $VINH = H$		2	6	mA
		VI = H, $IO = 0$, $VINH = H$		16	24	mA
		VINH = L			4	mA
Total Quiescent Logic Supply Current	lss	VI = L, $IO = 0$, $VINH = H$		44	60	mA
		VI = H, $IO = 0$, $VINH = H$		16	22	mA
		VINH = L		16	24	mA
Input Low Voltage	VIL		-0.3		1.5	V
Input High Voltage	Vін	$Vss \le 7V$	2.3		Vss	V
		$Vss \ge 7V$	2.3		7	V
Low Voltage Input Current	lı∟	VI = 0V			-10	μA
High Voltage Input Current	Ін	VI = 4.5V		30	100	μA
Inhibit Low Voltage	VINH, L		-0.3		1.5	V
Inhibit High Voltage	Vinh, h	$Vss \le 7V$	2.3		Vss	V
		Vss >7V	2.3		7	V
Low Voltage Inhibit Current	VINH, L			-30	-100	μA
High Voltage Inhibit Current	Vinh, h				10	μA
Source Output Saturation Voltage	VCEsatH	Io = -1A (-0.6A for L293D)		1.4	1.8	V
Sink Output Saturation Voltage	VCEsatL	Io = 1A (0.6A for L293D)		1.2	1.8	V
Clamp Diode Forward Voltage (L293D only)	VF	IF = 0.6A		1.3		V
Rise Time	TR	0.1 to 0.9 Vo (See Figure 1)		100		ns
Fall Time	TF	0.9 to 0.1 Vo (See Figure 1)		350		ns
Turn-on Delay	TON	0. 5 VI to 0.5 Vo (See Figure 1)		750		ns
Turn-off Delay	TOFF	0. 5 VI to 0.5 Vo (See Figure 1)		200		ns

SCHEMATIC DIAGRAM

APPLICATION INFORMATION

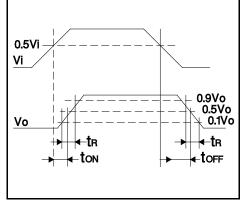
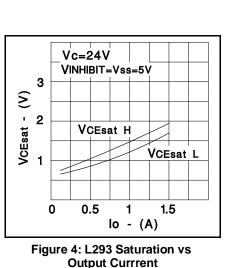



Figure 1: Switching Times

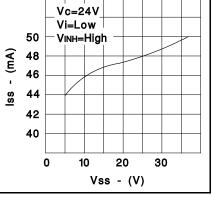


Figure 2: Quiescent Logic Supply Current vs Logic Supply Voltage

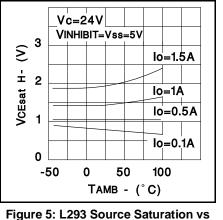


Figure 3: Output Voltage vs Input Voltage

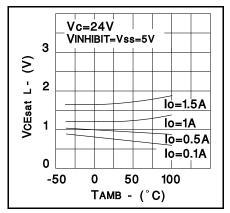


Figure 6: L293 Sink Saturation Voltage vs Ambient Temperature

NOTE: For L293D curves, multiply output current by 0.6.

APPLICATION INFORMATION (Cont.)

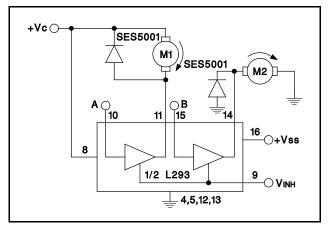


Figure 7: DC Motor Controls (with Connection to Ground and to Supply Voltage)

VINH	Α	M1	В	M2
Н	Н	Fast Motor Stop	Н	Run
Н	L	Run	L	Fast Motor Stop
L	х	Free Running Motor Stop	х	Free Running Motor Stop

L = Low H = High X = Don't Care

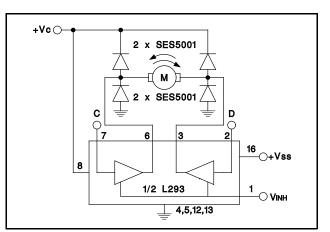


Figure 8: Bidirectional DC Motor Control

	INPUTS	FUNCTION
	C = H; D = L	Turn Right
VINH = H	C = L; D = H	Turn Left
	C = D	Fast Motor Stop
VINH = L	C = X; D = X	Free Running Motor Stop

L = Low H = High X = Don't Care

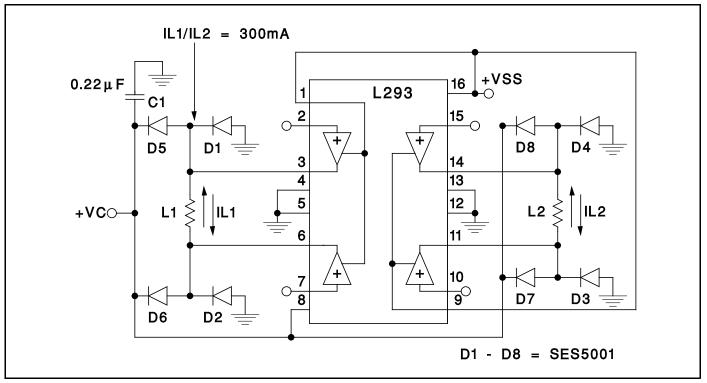


Figure 9: Bipolar Stepping Motor Control

MOUNTING INSTRUCTIONS

The Rthj-amp of the L293 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board or to an external heatsink.

The diagram of Figure 13 shows the maximum package power Ptot and the θ_{JA} as a function of the side "I" of two equal square copper areas having a thickness of 35μ (see

COPPER AREA 35 µ THICKNESS

Figure 10: Example of P.C. Board Copper Area which is used as Heatsink

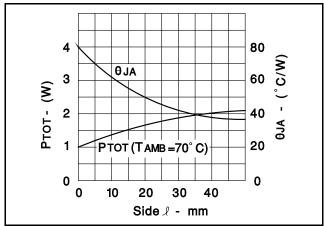


Figure 12: Maximum Package Power and Junction to Ambient Thermal Resistance

Figure 10). In addition, it is possible to use an external heatsink (see Figure 11).

During soldering the pins' temperature must not exceed 260° C and the soldering time must not be longer than 12 seconds.

The external heatsink or printed circuit copper area must be connected to electrical ground.

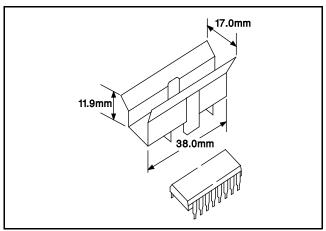


Figure 11: External Heatsink Mounting Example ($\theta_{JA} = 25^{\circ}C/W$)

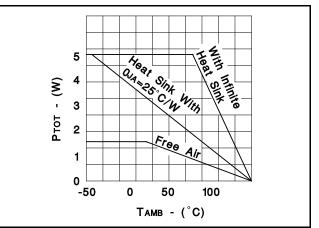


Figure 13: Maximum Allowable Power Dissipation vs Ambient Temperature

UNITRODE INTEGRATED CIRCUITS 7 CONTINENTAL BLVD. • MERRIMACK, NH 03054 TEL. (603) 424-2410 • FAX (603) 424-3460