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Abstract 
A number of universities are using inexpen-
sive robotic platforms to teach artificial in-
telligence and robotics courses – for exam-
ples, see the IEEE Robotics & Automation 
Magazine, vol. 10, no. 2, June 2003 [1]. The 
LEGO Mindstorms set is one of the most 
popular platforms. This set is frequently 
chosen for its low cost and ease of use. 
However, most of the work being done with 
it is in teaching reactive robotic architec-
tures. Other, more expensive platforms are 
used for the deliberative and hybrid robotic 
architectures. This paper explains how an 
off-the-shelf LEGO Mindstorms kit can be 
used to teach deliberative navigation, includ-
ing path planning and mapping. 
 

Introduction 
The intent of this project is to integrate LEGO 
Mindstorms into the curriculum as a tool for 
teaching deliberative robotic control. It consists 
of using a standard LEGO Robotic Command 
Explorer (RCX) – a small computer built around 
a Hitachi H8 controller – to control a delibera-
tive robotic architecture that performs mapping 
and path planning to achieve the goal of gather-
ing targets in an arena. To test the validity of its 
use as an educational tool, students in an intro-
ductory artificial intelligence class were given a 
project requiring them to build a deliberative 
robotic architecture using only commercially 
available LEGO components.  
 
The LEGO Mindstorms kits offer a lot of advan-
tages over other inexpensive platforms. First, 
they are one of the cheapest platforms available. 
The Mindstorms kit, complete with programma-
ble computer, building components, sensors, and 
motors, costs $200. The second advantage to the 
LEGO Mindstorms kit is that it requires no spe-
cial knowledge for construction. LEGO pieces, 
sensors, and motors are standardized to snap 
together, making connecting pieces very easy. 
Lastly, almost all students are familiar with 

LEGO bricks. Thus, building robots from LEGO 
bricks is much less intimidating for students 
building their first robots. They are much more 
likely to explore different configurations. For 
this reason, the project focuses on using only 
commercially available components. 
 

Lectures 
Students are provided an introduction to robotic 
control as a part of the introductory artificial 
intelligence course. When teaching the students 
about a deliberative robotic paradigm, goal-
directed actions and creating plans to meet those 
goals is emphasized. To help the students under-
stand the process of how the robot meets its 
goals, the “Sense-Plan-Act” organization of the 
architecture is discussed in detail (see Murphy 
[2]). Sensory input comes from either direct sen-
sor input or a priori information. The robot then 
plans an action with what knowledge it has. Fi-
nally, it acts on the plan. Then, the process re-
peats until the goal is met. If the plan fails, the 
robot re-plans. 
 
The explanation of the process then leads to a 
discussion of the need for a world model and the 
use of a knowledge representation language that 
can represent that model. The robot requires a 
language it can use to store information and later 
retrieve and process the information for planning 
purposes. To help students better understand 
what the robot does with the information it re-
ceives, there is a discussion on short term and 
long term memory. 
 
Next, the students are presented with the 
strengths and weaknesses of deliberative robotic 
control. The benefits include the ability to solve 
problems requiring cognitive skills, the ability to 
generate an optimal solution, and predictability. 
The deliberative robotic control’s biggest draw-
back is explained to be its dependence upon the 
world model. This includes requiring a closed 
world model, the symbol grounding problem, 
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the frame problem, the qualification problem, 
and localization. 
 
Once students are familiar with what a delibera-
tive robotic control does, they are introduced to 
methodologies of design. Specifically, planning 
algorithms. Tree searches are discussed in detail 
earlier in the course. They are reviewed again 
and the students are then introduced to the wave-
front algorithm (see Murphy [2]) with the intent 
of having them implement it on the robot during 
the laboratory assignments. The wavefront algo-
rithm was chosen because of its small memory 
requirement.  Its biggest drawback is the amount 
of time it takes to propagate the wave on the 
RCX. The wavefront algorithm is typically used 
with a grid-based world representation (see Fig-
ure 1). 
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Figure 1 – World Representation (pre-propagation) 
[Key: 2 = Goal, 1 = Obstacle, 0 = Non-obstacle] 

 
Only one goal can be evaluated at a time. So, if 
there are multiple goals, multiple waves must be 
propagated. When the wavefront algorithm be-
gins, the world space with the goal of interest is 
designated with a value of 2. World spaces with 
obstacles are designated with a value of 1. All 
other locations are given a value of 0. To propa-
gate the wave, the algorithm must check each 
grid space. If it has a value of 2 or greater, it 
then assigns the non-obstacle spaces around it 
with a value one greater than the current space. 
This continues until all reachable, non-obstacle 
spaces are assigned a new value (see Figure 2). 
 
It is important to define how the robot can move 
about its world so that the wavefront can cor-
rectly determine the shortest path. In Figure 2, 
you should note that only grids horizontally and 
vertically adjacent to a grid space are incre-
mented. This implies that the robot does not 

have the capability to travel diagonally from grid 
space to grid space. 
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Figure 2 – World Representation (post-propagation) 

[Key: 2 = Goal, 1 = Obstacle] 

  
Once the wave propagation is complete, the grid 
location of the robot’s current position is exam-
ined. That grid space’s value, minus 2, is the 
number of moves that the robot is away from the 
goal. Following the values down from the cur-
rent location value to the goal value of 2 gener-
ates a path. 
 
The next topic in the introduction to deliberative 
robotic control is localization. Both landmarking 
and deductive reckoning are discussed. Students 
are made aware of how to use landmarking to 
predict where the robot is in the world without 
being given a start location. They are also in-
formed of the requirement to provide a start lo-
cation and orientation when using deductive 
reckoning. The discussion also stresses the diffi-
culty of maintaining accuracy by solely using 
deductive reckoning. Additionally, students are 
told about physical errors caused by things like 
wheel slippage and an imbalanced physical de-
sign. They are cautioned that these errors are 
typically immeasurable with an internal localiza-
tion method like deductive reckoning. 
 
While deductive reckoning has many draw-
backs, the intent to use only off-the-shelf com-
ponents limits our projects to this approach. The 
LEGO Mindstorms main external sensor is the 
light sensor. It does not contain enough granu-
larity in readings or enough detection range to 
provide an easy methodology to incorporate 
landmarking. 
 
Finally, students are walked through the creation 
of a deliberative robotic control architecture. 
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Specifically, Murphy’s [2] processes of a cartog-
rapher, a planner, a navigator, a sensor monitor, 
and a pilot were discussed as a feasible func-
tionality software breakdown. 
 
Diane, the deliberative LEGO robot created for 
the project, was used to demonstrate a working 
model. The robot was programmed with known 
goals, obstacles, and a start location and orienta-
tion. As Diane progressed toward a goal, an ob-
stacle was placed in the way causing the plan to 
fail, the map to be updated, and another plan to 
be generated and executed for a successful com-
pletion (see Figure 3 for sample arena layout). 
 

 
 

Figure 3 – Sample Arena Layout 
 

Diane’s Hardware Construction 
Diane’s current hardware configuration (see 
Figure 4) is a result of analysis of the strengths 
and weaknesses of five previous hardware archi-
tectures designed by Mayer [3]. This design was 
discussed in depth with the students to provide 
them knowledge of how the hardware design can 
impact the robot’s functionality. It also provided 
the students with a real feasible solution. 
 

 
 

Figure 4 – Diane’s Current Architecture 
 

To successfully complete the tasks assigned, 
Diane required two rotation sensors for deduc-
tive reckoning, a light sensor for detecting tar-
gets, and a touch sensor for monitoring impacts 
with obstacles. Since the RCX only provides 
three input ports, the touch sensor was multi-
plexed with the light sensor. This is possible 
because when the touch sensor is closed, the 
RCX (reading the port signal as a light source) 
indicates a value equivalent to the brightest light 
source. It is very rare for the light sensor to pro-
vide a signal this bright even with the brightest 
of sources. The only time a conflict arises is 
when the RCX converts the values from raw 
form to an estimated value percentage. Physi-
cally keeping the light source from getting too 
close to the sensor is the easiest way to prevent 
the actual light value from reaching the touch 
sensor value. In addition to the sensors, Diane 
uses three standard LEGO motors. One motor is 
for linear motion, the other is for turning, and 
the third manipulates a target trap. 
 
One of the hardest parts of designing a delibera-
tive robotic architecture using deductive reckon-
ing is ensuring that the robot travels a straight 
path and makes accurate turns. To facilitate the 
success of these two things, Diane was built 
around a dual-differential gear system (see Fig-
ure 5). 

 

Linear Differential Turn Differential 
 

 
 

 
Figure 5 – Dual-Differential 

 
The dual-differential system has many advan-
tages. First, only one wheel axle is required. The 
same axle is used for both linear and turning 
motions. The robot is designed to rest on a rear 
skid plate for balance. With this axle mounted at 
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the center of the robot, the robot can essentially 
turn in place, removing turning radius calcula-
tions from movement equations. The second 
advantage is ensured equal speed at both wheels 
at all times. To obtain both linear and turning 
motions, two motors are required – one con-
nected to each differential shell. By powering 
one motor and braking1 the other (ensuring its 
connected differential shell doesn’t move), the 
wheels are forced to move at the same speed. 
Mathematically, this can be seen by understand-
ing that the angular velocity (speed and direc-
tion) of the differential shell is equal to the aver-
age angular velocity of the two axles connected 
to it. 

 
2
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Re-examine Figure 5 and note how the differen-
tial shells are geared together. In particular, no-
tice that there are an odd number of gears along 
one side and an even number of gears on the 
other. The effect is that when one differential 
shell is turning, all axles are turning with the 
same angular velocity but the axles on the other 
differential are turning in opposite directions. 
Since the gears are all of the same size between 
the differentials, the speed of axle rotation on the 
second differential is equal to the speed of the 
first differential. Since the angular velocities of 
the axles on the second differential are of equal 
speed but opposite direction, by equation 1 we 
can determine that the second differential shell 
has a velocity of zero. The opposite motion of 
the two axles translates through the second dif-
ferential shell via the beveled gears inside the 
shell.  
 
By rotating one differential shell and keeping the 
other stationary – by braking the motor con-
nected to the second differential – the speed of 
the two wheels remain equal, regardless whether 
they travel in the same or opposite directions. If 
the second differential shell were to turn, then 
the speed of each wheel would have to change. 
An additional advantage is the design’s flexibil-
ity. A turn with a non-zero turning radius can be 

                                                 
1 Note that the Handy Board does not support braking 
with a motor. It is left free floating when set to off. 

executed by turning on both motors at once. The 
exact radius of the turn is determined by the dif-
ference in speeds. This third advantage gives 
great flexibility in execution with the same de-
sign. 
 
Two encoders are required to properly conduct 
deductive reckoning. One is directly attached to 
the output shaft of the linear motor and the sec-
ond is directly attached to the turning motor. 
Thus, both have a 1:1 ratio in angular velocity 
with their respective motors. LEGO rotation 
sensors are capable of registering 16 ticks per 
rotation of the rotation sensor internal axle. This 
yields 22.5 degrees per tick, which is equivalent 
to approximately 6 mm on Diane’s 30.4 mm 
diameter wheel. This is the amount of error that 
can be incurred each time Diane starts and stops. 
To improve the granularity between rotation 
sensor ticks and actual wheel rotations, the rota-
tion sensor can be geared up (increase its angu-
lar velocity in comparison to the motor) or the 
wheels can be geared down from the motor. The 
problem with the former is that the rotation sen-
sors have a limited angular velocity before they 
start loosing accurate count. Per Ferrari and Fer-
rari [4], this limit is somewhere around the speed 
of the motor. So, to maintain accurate count, 
Diane’s wheel axle is geared down from the mo-
tor while maintaining a 1:1 ratio between rota-
tion sensor and motor. The motor to wheel ratio 
is 1:6, resulting in 96 rotation sensor ticks per 
wheel revolution. This provides a more accept-
able accuracy of 1 mm per tick. 
 
While gearing is important for accuracy when 
using the LEGO rotation sensors, the drawbacks 
and other benefits of Diane’s design should also 
be noted. First, given the 1:6 ratio, the wheels 
are traveling at 1/6th of the motor speed. Ap-
proximating that the LEGO motors turn at about 
250 rpm when loaded [4], Diane’s wheels are 
only turning at about 40 rpm – about 40 cm per 
minute. However, torque through a gear train is 
inversely proportional to speed. Thus, Diane has 
6 times the torque at her wheels than her motor, 
enabling her to push a battery-laden target and 
roll over small bits of dirt and debris in her envi-
ronment. Also, Diane’s gear train involves 5 
gears between each motor and wheel axle. This 
requires the need to account for gear slop – the 
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amount of rotation you can achieve in your input 
gear without moving your output gear. Diane’s 
deliberative architecture tracks which way each 
motor last moved and adds a correction if it is 
opposite the current direction. 
 
Physical construction also plays an important 
role. When using only internal references for 
navigation, it is extremely important that all 
immeasurable errors be reduced as much as pos-
sible. The physical design should be balanced. If 
one side is more heavily weighted than the other, 
then the robot tends to drift toward the heavier 
side. This drift is typically very hard to calculate 
and even harder to compensate for accurately. 
Similarly, it is best if the wheel axles are sup-
ported on both sides of the wheel. If unsup-
ported, the weight of the RCX alone causes the 
ends of the axles to bow, leading to further im-
measurable errors. Finally, the wheel axle 
should be somewhat centered on the robot. The 
more off-balance the load on the two sides of the 
gear axle, the harder the motors have to work to 
turn. This usually leads to immeasurable wheel 
slippage and reduced battery life. 
 

Diane’s Software Construction 
Diane is programmed using Interactive C ver-
sion 4.2 (IC4). IC4 was chosen over Not-Quite-
C (NQC) because IC4 allows more room for 
program code by replacing the standard LEGO 
firmware. With extra memory, a single variable 
can be used for representation of each 6 x 8 grid 
space. If NQC is used, bitwise encoding of the 
grid is required due to decreased memory avail-
ability. While not impossible, it is felt that the 
added complexity of managing a bitwise repre-
sentation may detract from the core lessons. 
 
Diane’s programming begins with initialization 
functions that note the average ambient and tar-
get light levels. She also receives a priori user 
input such as known obstacle, goal, and start 
location and heading. After initialization, Diane 
runs two concurrent processes. A retrieve proc-
ess constantly makes and executes plans and a 
monitor process watches for plan failure. Diane 
keeps track of world information in a multidi-
mensional array, using one variable per grid 
space. She manages the vertices, the grids them-

selves, vice the edges between them. Thus, an 
obstacle or target occupies an entire grid space. 
 
Diane begins by determining which known tar-
get is closest. She then makes a plan from the 
start location to the nearest target. If an obstacle 
is encountered, Diane adds the obstacle to the 
world map and re-plans. She determines the new 
closest goal and plans a path there. If a new tar-
get is encountered, Diane adds the new target to 
the world map and re-plans from her current lo-
cation. Once a target is captured, she makes a 
plan to return to the start location to release the 
target. If an obstacle is encountered while re-
turning to the start location, Diane reacts simi-
larly to an obstacle encounter when retrieving a 
target. A drawback of Diane’s design is that 
when a target is in the trap, she has no way of 
detecting new targets as the captured target 
blocks the target-detecting light sensor. 
 

Lab Exercise 
To test the applicability of this educational ap-
proach to deliberative robotics, 21 students – in 
teams of 2 – were assigned a deliberative robotic 
task of finding targets. IC4 was the required 
programming environment. To try and empha-
size the necessity of a good physical design and 
its interface with the software, students were 
required to build their robotic platforms from 
scratch (though they were encouraged to use 
design ideas from Diane). To simplify their task, 
the world was modified to use a black tape sil-
houette around a grid as an obstacle and a green 
silhouette as a target. Since there were no physi-
cal targets, the students did not have the concern 
of designing adequate target traps or planning 
return trips. The lack of a return trip requirement 
also reduced localization errors. If the student’s 
robot encountered an unknown obstacle, it was 
required to go back to the last known empty grid 
space, modify its world representation, and re-
plan. If it encountered an unknown target space, 
it was required to audibly acknowledge the new 
target with a series of beeps and could then pro-
ceed with its original plan through the new tar-
get grid space. 
 
Students were graded on logic and coding, 
physical construction, actually finding the goals 
and avoiding the obstacles, and an overall design 
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integration category. They were provided with 
the wavefront algorithm and had two weeks to 
complete the project. Further, students were told 
that they were allowed 3 “nudges” during a run 
to assist with localization should the robot begin 
to go awry. 
 
The results were very positive. The students 
showed understanding through both successful 
execution and comprehension of the causes of 
failure. All students used the wavefront algo-
rithm for path planning. One team mentioned 
attempting to use A* but found the memory re-
quirements too restrictive even with IC4. Four of 
the teams made it a personal goal to use as few 
nudges as possible. One of these teams used 0; 
the others used 1 each. Eight of 11 teams found 
the target and avoided all obstacles. While not 
all teams were successful, a discussion was held 
with each team after their run to provide feed-
back on the positive and negative aspects of 
their design and logic. At the end of the labora-
tory, a feedback form was handed out. 
 
Nineteen of 21 feedback forms were received. 
While many students seemed to grasp the diffi-
culty of developing a mobile robot with a good 
hardware/software interface and the ability to 
localize, a few negative comments were received 
regarding the annoyance of sensor limitations 
and amount of emphasis on hardware systems 
and the related physics. The material may need 
to be modified to ensure that the importance of 
the role that the physical world plays on robotics 
systems is stressed and understood by all of the 
students. The other major comments received 
regarded the amount of time required to build 
the robot. 
 
The deliberative robotic assignment was pro-
vided to the students after a reactive robotic as-
signment was complete. Thus, each team built 
two separate robots that often had large varia-
tions in design. In future instruction it may be 
best to provide the deliberative lectures first, 
have the teams build one robot to the more re-
strictive deliberative hardware requirements re-
quired for proper localization, and, in a later as-
signment, incorporate reactive functionality to 
make a single hybrid robot. 
 

Overall, the project proves that deliberative ro-
botic architectures can be taught successfully 
using commercially available LEGO compo-
nents. All teams showed comprehension of the 
required task. Even those teams that did not suc-
cessfully complete the assignment still made 
significant progress toward the end goal. While 
student feedback reveals areas to be improved 
upon, the majority felt that they had learned 
something and enjoyed doing it. More specific 
details about the project can be found in Mayer’s 
thesis [3], a copy of which can be obtained by 
sending e-mail to the address at the top. 
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