
1

Teaching Deliberative Navigation Using the LEGO RCX and
Standard LEGO Components

Gary R. Mayer*, Jerry B. Weinberg†, Xudong Yu‡

Department of Computer Science, School of Engineering
Southern Illinois University at Edwardsville

*malekith@alum.wpi.edu, †jweinbe@siue.edu, ‡xyu@siue.edu

Abstract
A number of universities are using inexpen-
sive robotic platforms to teach artificial in-
telligence and robotics courses – for exam-
ples, see the IEEE Robotics & Automation
Magazine, vol. 10, no. 2, June 2003 [1]. The
LEGO Mindstorms set is one of the most
popular platforms. This set is frequently
chosen for its low cost and ease of use.
However, most of the work being done with
it is in teaching reactive robotic architec-
tures. Other, more expensive platforms are
used for the deliberative and hybrid robotic
architectures. This paper explains how an
off-the-shelf LEGO Mindstorms kit can be
used to teach deliberative navigation, includ-
ing path planning and mapping.

Introduction
The intent of this project is to integrate LEGO
Mindstorms into the curriculum as a tool for
teaching deliberative robotic control. It consists
of using a standard LEGO Robotic Command
Explorer (RCX) – a small computer built around
a Hitachi H8 controller – to control a delibera-
tive robotic architecture that performs mapping
and path planning to achieve the goal of gather-
ing targets in an arena. To test the validity of its
use as an educational tool, students in an intro-
ductory artificial intelligence class were given a
project requiring them to build a deliberative
robotic architecture using only commercially
available LEGO components.

The LEGO Mindstorms kits offer a lot of advan-
tages over other inexpensive platforms. First,
they are one of the cheapest platforms available.
The Mindstorms kit, complete with programma-
ble computer, building components, sensors, and
motors, costs $200. The second advantage to the
LEGO Mindstorms kit is that it requires no spe-
cial knowledge for construction. LEGO pieces,
sensors, and motors are standardized to snap
together, making connecting pieces very easy.
Lastly, almost all students are familiar with

LEGO bricks. Thus, building robots from LEGO
bricks is much less intimidating for students
building their first robots. They are much more
likely to explore different configurations. For
this reason, the project focuses on using only
commercially available components.

Lectures
Students are provided an introduction to robotic
control as a part of the introductory artificial
intelligence course. When teaching the students
about a deliberative robotic paradigm, goal-
directed actions and creating plans to meet those
goals is emphasized. To help the students under-
stand the process of how the robot meets its
goals, the “Sense-Plan-Act” organization of the
architecture is discussed in detail (see Murphy
[2]). Sensory input comes from either direct sen-
sor input or a priori information. The robot then
plans an action with what knowledge it has. Fi-
nally, it acts on the plan. Then, the process re-
peats until the goal is met. If the plan fails, the
robot re-plans.

The explanation of the process then leads to a
discussion of the need for a world model and the
use of a knowledge representation language that
can represent that model. The robot requires a
language it can use to store information and later
retrieve and process the information for planning
purposes. To help students better understand
what the robot does with the information it re-
ceives, there is a discussion on short term and
long term memory.

Next, the students are presented with the
strengths and weaknesses of deliberative robotic
control. The benefits include the ability to solve
problems requiring cognitive skills, the ability to
generate an optimal solution, and predictability.
The deliberative robotic control’s biggest draw-
back is explained to be its dependence upon the
world model. This includes requiring a closed
world model, the symbol grounding problem,

2

the frame problem, the qualification problem,
and localization.

Once students are familiar with what a delibera-
tive robotic control does, they are introduced to
methodologies of design. Specifically, planning
algorithms. Tree searches are discussed in detail
earlier in the course. They are reviewed again
and the students are then introduced to the wave-
front algorithm (see Murphy [2]) with the intent
of having them implement it on the robot during
the laboratory assignments. The wavefront algo-
rithm was chosen because of its small memory
requirement. Its biggest drawback is the amount
of time it takes to propagate the wave on the
RCX. The wavefront algorithm is typically used
with a grid-based world representation (see Fig-
ure 1).

0 0 0 0 0 2 0 0

0 0 0 1 0 0 0 0

0 0 1 1 1 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

Figure 1 – World Representation (pre-propagation)
[Key: 2 = Goal, 1 = Obstacle, 0 = Non-obstacle]

Only one goal can be evaluated at a time. So, if
there are multiple goals, multiple waves must be
propagated. When the wavefront algorithm be-
gins, the world space with the goal of interest is
designated with a value of 2. World spaces with
obstacles are designated with a value of 1. All
other locations are given a value of 0. To propa-
gate the wave, the algorithm must check each
grid space. If it has a value of 2 or greater, it
then assigns the non-obstacle spaces around it
with a value one greater than the current space.
This continues until all reachable, non-obstacle
spaces are assigned a new value (see Figure 2).

It is important to define how the robot can move
about its world so that the wavefront can cor-
rectly determine the shortest path. In Figure 2,
you should note that only grids horizontally and
vertically adjacent to a grid space are incre-
mented. This implies that the robot does not

have the capability to travel diagonally from grid
space to grid space.

7 6 5 4 3 2 3 4

8 7 6 1 4 3 4 5

9 8 1 1 1 1 5 6

10 9 10 11 10 1 6 7

11 10 11 10 9 8 7 8

Figure 2 – World Representation (post-propagation)

[Key: 2 = Goal, 1 = Obstacle]

Once the wave propagation is complete, the grid
location of the robot’s current position is exam-
ined. That grid space’s value, minus 2, is the
number of moves that the robot is away from the
goal. Following the values down from the cur-
rent location value to the goal value of 2 gener-
ates a path.

The next topic in the introduction to deliberative
robotic control is localization. Both landmarking
and deductive reckoning are discussed. Students
are made aware of how to use landmarking to
predict where the robot is in the world without
being given a start location. They are also in-
formed of the requirement to provide a start lo-
cation and orientation when using deductive
reckoning. The discussion also stresses the diffi-
culty of maintaining accuracy by solely using
deductive reckoning. Additionally, students are
told about physical errors caused by things like
wheel slippage and an imbalanced physical de-
sign. They are cautioned that these errors are
typically immeasurable with an internal localiza-
tion method like deductive reckoning.

While deductive reckoning has many draw-
backs, the intent to use only off-the-shelf com-
ponents limits our projects to this approach. The
LEGO Mindstorms main external sensor is the
light sensor. It does not contain enough granu-
larity in readings or enough detection range to
provide an easy methodology to incorporate
landmarking.

Finally, students are walked through the creation
of a deliberative robotic control architecture.

3

Specifically, Murphy’s [2] processes of a cartog-
rapher, a planner, a navigator, a sensor monitor,
and a pilot were discussed as a feasible func-
tionality software breakdown.

Diane, the deliberative LEGO robot created for
the project, was used to demonstrate a working
model. The robot was programmed with known
goals, obstacles, and a start location and orienta-
tion. As Diane progressed toward a goal, an ob-
stacle was placed in the way causing the plan to
fail, the map to be updated, and another plan to
be generated and executed for a successful com-
pletion (see Figure 3 for sample arena layout).

Figure 3 – Sample Arena Layout

Diane’s Hardware Construction
Diane’s current hardware configuration (see
Figure 4) is a result of analysis of the strengths
and weaknesses of five previous hardware archi-
tectures designed by Mayer [3]. This design was
discussed in depth with the students to provide
them knowledge of how the hardware design can
impact the robot’s functionality. It also provided
the students with a real feasible solution.

Figure 4 – Diane’s Current Architecture

To successfully complete the tasks assigned,
Diane required two rotation sensors for deduc-
tive reckoning, a light sensor for detecting tar-
gets, and a touch sensor for monitoring impacts
with obstacles. Since the RCX only provides
three input ports, the touch sensor was multi-
plexed with the light sensor. This is possible
because when the touch sensor is closed, the
RCX (reading the port signal as a light source)
indicates a value equivalent to the brightest light
source. It is very rare for the light sensor to pro-
vide a signal this bright even with the brightest
of sources. The only time a conflict arises is
when the RCX converts the values from raw
form to an estimated value percentage. Physi-
cally keeping the light source from getting too
close to the sensor is the easiest way to prevent
the actual light value from reaching the touch
sensor value. In addition to the sensors, Diane
uses three standard LEGO motors. One motor is
for linear motion, the other is for turning, and
the third manipulates a target trap.

One of the hardest parts of designing a delibera-
tive robotic architecture using deductive reckon-
ing is ensuring that the robot travels a straight
path and makes accurate turns. To facilitate the
success of these two things, Diane was built
around a dual-differential gear system (see Fig-
ure 5).

Linear Differential Turn Differential

Figure 5 – Dual-Differential

The dual-differential system has many advan-
tages. First, only one wheel axle is required. The
same axle is used for both linear and turning
motions. The robot is designed to rest on a rear
skid plate for balance. With this axle mounted at

Wheel
axle

Wheel
axle

ttaarrggeettss oobbssttaacclleess

4

the center of the robot, the robot can essentially
turn in place, removing turning radius calcula-
tions from movement equations. The second
advantage is ensured equal speed at both wheels
at all times. To obtain both linear and turning
motions, two motors are required – one con-
nected to each differential shell. By powering
one motor and braking1 the other (ensuring its
connected differential shell doesn’t move), the
wheels are forced to move at the same speed.
Mathematically, this can be seen by understand-
ing that the angular velocity (speed and direc-
tion) of the differential shell is equal to the aver-
age angular velocity of the two axles connected
to it.

2

21 axleaxle
shell

νν
ν

+
= (Eq. 1)

Re-examine Figure 5 and note how the differen-
tial shells are geared together. In particular, no-
tice that there are an odd number of gears along
one side and an even number of gears on the
other. The effect is that when one differential
shell is turning, all axles are turning with the
same angular velocity but the axles on the other
differential are turning in opposite directions.
Since the gears are all of the same size between
the differentials, the speed of axle rotation on the
second differential is equal to the speed of the
first differential. Since the angular velocities of
the axles on the second differential are of equal
speed but opposite direction, by equation 1 we
can determine that the second differential shell
has a velocity of zero. The opposite motion of
the two axles translates through the second dif-
ferential shell via the beveled gears inside the
shell.

By rotating one differential shell and keeping the
other stationary – by braking the motor con-
nected to the second differential – the speed of
the two wheels remain equal, regardless whether
they travel in the same or opposite directions. If
the second differential shell were to turn, then
the speed of each wheel would have to change.
An additional advantage is the design’s flexibil-
ity. A turn with a non-zero turning radius can be

1 Note that the Handy Board does not support braking
with a motor. It is left free floating when set to off.

executed by turning on both motors at once. The
exact radius of the turn is determined by the dif-
ference in speeds. This third advantage gives
great flexibility in execution with the same de-
sign.

Two encoders are required to properly conduct
deductive reckoning. One is directly attached to
the output shaft of the linear motor and the sec-
ond is directly attached to the turning motor.
Thus, both have a 1:1 ratio in angular velocity
with their respective motors. LEGO rotation
sensors are capable of registering 16 ticks per
rotation of the rotation sensor internal axle. This
yields 22.5 degrees per tick, which is equivalent
to approximately 6 mm on Diane’s 30.4 mm
diameter wheel. This is the amount of error that
can be incurred each time Diane starts and stops.
To improve the granularity between rotation
sensor ticks and actual wheel rotations, the rota-
tion sensor can be geared up (increase its angu-
lar velocity in comparison to the motor) or the
wheels can be geared down from the motor. The
problem with the former is that the rotation sen-
sors have a limited angular velocity before they
start loosing accurate count. Per Ferrari and Fer-
rari [4], this limit is somewhere around the speed
of the motor. So, to maintain accurate count,
Diane’s wheel axle is geared down from the mo-
tor while maintaining a 1:1 ratio between rota-
tion sensor and motor. The motor to wheel ratio
is 1:6, resulting in 96 rotation sensor ticks per
wheel revolution. This provides a more accept-
able accuracy of 1 mm per tick.

While gearing is important for accuracy when
using the LEGO rotation sensors, the drawbacks
and other benefits of Diane’s design should also
be noted. First, given the 1:6 ratio, the wheels
are traveling at 1/6th of the motor speed. Ap-
proximating that the LEGO motors turn at about
250 rpm when loaded [4], Diane’s wheels are
only turning at about 40 rpm – about 40 cm per
minute. However, torque through a gear train is
inversely proportional to speed. Thus, Diane has
6 times the torque at her wheels than her motor,
enabling her to push a battery-laden target and
roll over small bits of dirt and debris in her envi-
ronment. Also, Diane’s gear train involves 5
gears between each motor and wheel axle. This
requires the need to account for gear slop – the

5

amount of rotation you can achieve in your input
gear without moving your output gear. Diane’s
deliberative architecture tracks which way each
motor last moved and adds a correction if it is
opposite the current direction.

Physical construction also plays an important
role. When using only internal references for
navigation, it is extremely important that all
immeasurable errors be reduced as much as pos-
sible. The physical design should be balanced. If
one side is more heavily weighted than the other,
then the robot tends to drift toward the heavier
side. This drift is typically very hard to calculate
and even harder to compensate for accurately.
Similarly, it is best if the wheel axles are sup-
ported on both sides of the wheel. If unsup-
ported, the weight of the RCX alone causes the
ends of the axles to bow, leading to further im-
measurable errors. Finally, the wheel axle
should be somewhat centered on the robot. The
more off-balance the load on the two sides of the
gear axle, the harder the motors have to work to
turn. This usually leads to immeasurable wheel
slippage and reduced battery life.

Diane’s Software Construction
Diane is programmed using Interactive C ver-
sion 4.2 (IC4). IC4 was chosen over Not-Quite-
C (NQC) because IC4 allows more room for
program code by replacing the standard LEGO
firmware. With extra memory, a single variable
can be used for representation of each 6 x 8 grid
space. If NQC is used, bitwise encoding of the
grid is required due to decreased memory avail-
ability. While not impossible, it is felt that the
added complexity of managing a bitwise repre-
sentation may detract from the core lessons.

Diane’s programming begins with initialization
functions that note the average ambient and tar-
get light levels. She also receives a priori user
input such as known obstacle, goal, and start
location and heading. After initialization, Diane
runs two concurrent processes. A retrieve proc-
ess constantly makes and executes plans and a
monitor process watches for plan failure. Diane
keeps track of world information in a multidi-
mensional array, using one variable per grid
space. She manages the vertices, the grids them-

selves, vice the edges between them. Thus, an
obstacle or target occupies an entire grid space.

Diane begins by determining which known tar-
get is closest. She then makes a plan from the
start location to the nearest target. If an obstacle
is encountered, Diane adds the obstacle to the
world map and re-plans. She determines the new
closest goal and plans a path there. If a new tar-
get is encountered, Diane adds the new target to
the world map and re-plans from her current lo-
cation. Once a target is captured, she makes a
plan to return to the start location to release the
target. If an obstacle is encountered while re-
turning to the start location, Diane reacts simi-
larly to an obstacle encounter when retrieving a
target. A drawback of Diane’s design is that
when a target is in the trap, she has no way of
detecting new targets as the captured target
blocks the target-detecting light sensor.

Lab Exercise
To test the applicability of this educational ap-
proach to deliberative robotics, 21 students – in
teams of 2 – were assigned a deliberative robotic
task of finding targets. IC4 was the required
programming environment. To try and empha-
size the necessity of a good physical design and
its interface with the software, students were
required to build their robotic platforms from
scratch (though they were encouraged to use
design ideas from Diane). To simplify their task,
the world was modified to use a black tape sil-
houette around a grid as an obstacle and a green
silhouette as a target. Since there were no physi-
cal targets, the students did not have the concern
of designing adequate target traps or planning
return trips. The lack of a return trip requirement
also reduced localization errors. If the student’s
robot encountered an unknown obstacle, it was
required to go back to the last known empty grid
space, modify its world representation, and re-
plan. If it encountered an unknown target space,
it was required to audibly acknowledge the new
target with a series of beeps and could then pro-
ceed with its original plan through the new tar-
get grid space.

Students were graded on logic and coding,
physical construction, actually finding the goals
and avoiding the obstacles, and an overall design

6

integration category. They were provided with
the wavefront algorithm and had two weeks to
complete the project. Further, students were told
that they were allowed 3 “nudges” during a run
to assist with localization should the robot begin
to go awry.

The results were very positive. The students
showed understanding through both successful
execution and comprehension of the causes of
failure. All students used the wavefront algo-
rithm for path planning. One team mentioned
attempting to use A* but found the memory re-
quirements too restrictive even with IC4. Four of
the teams made it a personal goal to use as few
nudges as possible. One of these teams used 0;
the others used 1 each. Eight of 11 teams found
the target and avoided all obstacles. While not
all teams were successful, a discussion was held
with each team after their run to provide feed-
back on the positive and negative aspects of
their design and logic. At the end of the labora-
tory, a feedback form was handed out.

Nineteen of 21 feedback forms were received.
While many students seemed to grasp the diffi-
culty of developing a mobile robot with a good
hardware/software interface and the ability to
localize, a few negative comments were received
regarding the annoyance of sensor limitations
and amount of emphasis on hardware systems
and the related physics. The material may need
to be modified to ensure that the importance of
the role that the physical world plays on robotics
systems is stressed and understood by all of the
students. The other major comments received
regarded the amount of time required to build
the robot.

The deliberative robotic assignment was pro-
vided to the students after a reactive robotic as-
signment was complete. Thus, each team built
two separate robots that often had large varia-
tions in design. In future instruction it may be
best to provide the deliberative lectures first,
have the teams build one robot to the more re-
strictive deliberative hardware requirements re-
quired for proper localization, and, in a later as-
signment, incorporate reactive functionality to
make a single hybrid robot.

Overall, the project proves that deliberative ro-
botic architectures can be taught successfully
using commercially available LEGO compo-
nents. All teams showed comprehension of the
required task. Even those teams that did not suc-
cessfully complete the assignment still made
significant progress toward the end goal. While
student feedback reveals areas to be improved
upon, the majority felt that they had learned
something and enjoyed doing it. More specific
details about the project can be found in Mayer’s
thesis [3], a copy of which can be obtained by
sending e-mail to the address at the top.

Works Cited
[1] Weinberg, Jerry B., and Xudong Yu.
“Robotics in Education: Low-Cost Platforms
for Teaching Integrated Systems.” IEEE
Robotics & Automation Magazine. vol. 10,
no. 2. June 2003: 4 – 6.

[2] Murphy, Robin. Introduction to AI
Robotics. Cambridge: MIT Press, 2000.

[3] Mayer, Gary. “Implementation of a De-
liberative and Reactive Robot Control Ar-
chitecture on an Inexpensive Platform.”
Thesis Southern Illinois University at Ed-
wardsville, 2003.

[4] Ferrari, Mario, and Giulio Ferrari. Build-
ing Robots with LEGO Mindstorms: The
Ultimate Tool for Mindstorms Maniacs!. Ed.
Ralph Hempel. Rockland: Syngress Publish-
ing, Inc., 2002.

