

Implementation of a Deliberative Robot Control Architecture
on an Inexpensive Robot Platform

by Gary R. Mayer, Bachelor of Science

A Thesis Submitted in Partial
Fulfillment of the Requirements
for the Master of Science Degree

Department of Computer Science
in the Graduate School

Southern Illinois University Edwardsville
Edwardsville, Illinois

June, 2004

ii

TABLE OF CONTENTS

LIST OF FIGURES ... iv

LIST OF TABLES...v

Chapter

I. INTRODUCTION ...1

Problem Statement ...1
Purpose of the Project ..5

II. RELATED WORKS..7

III. ARCHITECTURE ...9

Model ...9
Current Architecture ..9

Reactive paradigm software architecture...10
Deliberative paradigm software architecture ...15
About LEGO hardware ..20
Hardware architecture..21
Problems encountered with the current architecture..29

Previous Architectures ...30
First architecture, “Buggy” ..31
Second architecture, “Seeker” ...32
Third architectures, “Mantis” and “Trap”..33
Fourth architecture, “Balanced”...38

IV. RESULTS ..41

Test Run Results ..41
Classroom Application...44

Lectures and robotics projects ...45
Classroom results ...49

Conclusion ...50
Future Work ...52

WORKS CITED ..54

iii

APPENDICES

A. Wavefront Propagation Algorithm ..56
B. Differential Gearing ...60
C. Student Robotic Assignments ..70
D. Summary of Student Feedback Forms...78
E. Hardware Building Instructions...84
F. Code for the Reactive Robotic Architecture..114
G. Code for the Deliberative Robotic Architecture ..136

iv

LIST OF FIGURES

Figure Page

1. LEGO Mindstorms RCX ...3

2. Example of a Robotic Mechanical Structure ..3

3. Finite State Acceptor Diagram..13

4. Suppression Arbitration Network ...14

5. Arena Example..24

6. Lit Target ..25

7. “Diane / Rea”, The Current Architecture..26

8. “Buggy”, The 1st Hardware Architecture..32

9. “Seeker”, The 2nd Hardware Architecture (Side and Bottom Views).......................33

10. “Mantis”, The 3rd Hardware Architecture...35

11. “Trap”, Revised 3rd Architecture ..36

12. Moments Explained ..38

13. “Balanced”, the 4th Architecture (Side and Bottom Views)39

14. Arena Layout Patterns for Test Runs..43

15. Project Arena Layouts...44

16. Wavefront Propagation Pseudocode ...58

17. Wavefront Algorithm Propagation Example ..59

18. Radius Turn...61

19. LEGO Differential Gear Assembly ..63

20. LEGO Dual-Differential ...65

v

LIST OF TABLES

Table Page

1. Finite State Acceptor Diagram..14

2. LEGO Hardware Parts List...86

3. Hardware Building Instructions..88

4. RCX Port Configuration ...113

CHAPTER I

INTRODUCTION

Problem Statement

Robotic platforms are being used to enhance the education of students from

elementary school to graduate college courses. A growing population of inexpensive

platforms is among these.1 Nevertheless, some people have viewed the capability of these

inexpensive platforms as too limited to create anything but rudimentary robotic architectures

(reactive control). The intent of this project is to show that the full potential of these

platforms has yet to be explored; robotic architectures can be created from inexpensive

platforms like LEGO Mindstorms and used for teaching a complex concept like path

planning and navigation in robotics and artificial intelligence courses. But, before

understanding the “how” of using these inexpensive platforms, it is important to understand

“why” they have come to play such a large role.

Weinberg and Yu [16] state that the reason for robotics success as an educational tool

is three-fold. First, robots offer a unique learning experience by providing hands-on

experience with an integrated system. Second, the cost of robotic platforms has dropped

considerably over the last decade, making them affordable to schools with small budgets.2

Third, the new platforms offer a “plug-and-play feel”. The latter has lessened the need for

instructors and students to have a broad knowledge of how to design and integrate the

1 A broad range of applications can be examined in , , , , ,[, . [2] [5] [7] [8] [10] 13] [14]
2 The LEGO Mindstorms Robotics Invention System – with over 700 LEGO pieces and the controller – can be
bought for under $200.00 (US).

2

mechanical, electrical, and computational components of a robotic system. Thus, robotics is

no longer restricted to large institutions, but available to others for a number of purposes.

Another reason that robotics was limited in its application was a lack of a framework

for insertion into the curriculum. With the Association for Computing Machinery (ACM) /

Institute of Electrical and Electronics Engineers, Inc. (IEEE) Computing Curriculum 2001

(CC2001) developing curricular guidelines for undergraduate programs in computing, this

barrier has been breached [10]. Klassner and Anderson [10] believe that robotics projects can

support at least seven of the 14 knowledge areas in the CC2001. They then pose the

following criteria for a robotic platform to meet these criteria: it must support multiple

sensors, have a modifiable chassis, support communication between robots and / or a

personal computer, be programmable in several languages commonly used in computer

science courses, and the robot platform requires a central processing unit (CPU) and enough

random access memory (RAM) to support complex programming. Lastly, it must be

affordable. The LEGO Mindstorms kit is strong in many of these areas. Its success in the

hobby community has helped fill in the gaps where it is weak as an off-the-shelf product.

In 1998, collaborating with the Massachusetts Institute of Technology (MIT), the

LEGO Group released LEGO Mindstorms [4]. Mindstorms was a new product line that

makes use of LEGO’s existing plastic bricks, motors, and gears and allows the user to

automate a mechanical creation with a mobile programmable computer. Its computer, called

the Robotic Command Explorer (RCX) (Figure 1, below), is based on a Hitachi H8

microcontroller running at 16 MHz and with 32 KB of static random access memory (RAM)

for firmware and programs. The LEGO product makes it simple to construct a mechanical

3

structure (Figure 2, below) through the use of very familiar LEGO bricks. Furthermore, the

sensors and motors all have a standard interface that makes them easy to connect to the RCX

and a graphical user interface provided by LEGO that simplifies the programming process.

The graphical programming environment is intended to be simplistic and allows

programming to be as easy as attaching two virtual LEGO code bricks together. Further, the

platform has been so popular that a number of hobbyists and schools have created a variety

of C, Java, LISP, and Visual Basic programming environments to support the LEGO RCX

and a growing interest in robotics. These environments have also added capabilities beyond

the LEGO graphical programming tool like floating point variables, multidimensional arrays,

structures, and pointers [3],[6].

Figure 1: LEGO Mindstorms RCX Figure 2: Example of a Robotic Mechanical Structure

Since the 1990s, robots using LEGO Mindstorms have appeared as educational tools

for elementary, high school, and college students around the world [4]. The approach and

purpose of the projects differ, but the emphasis remains to capture students’ interest in the

subject matter by providing the ability to logically devise, create, and test their ideas on a

platform capable of interacting with the real world. The success of these platforms and their

4

effect on students can be seen by their use in international robotics competitions at both the

college and high school levels.3 Furthermore, robotics in education has grown enough to

warrant its own forum in professional conferences and publications of organizations like the

American Association for Artificial Intelligence (AAAI) and IEEE.4 While the popularity of

these inexpensive platforms has proven their usefulness, there is still some argument that the

utility is very limited to robotics education and research due to the reduced processing

capability, memory capacity, and sensor limitations. In her book, Robin Murphy specifically

states, “Lego Mindstorms….robots can be used for the first six chapters [on reactive

paradigm robotics], but their current programming interface and sensor limitations interfere

with using those robots for the more advanced material [such as deliberative paradigm

robotics using path planning and map making].” [12] While it is true that the limited

resources of the inexpensive platforms do not support the spectrum of current robotic

architectures as well as the more expensive robotics platforms specifically intended for

robotics research, a platform like LEGO Mindstorms can still be used.

The reactive paradigm discussed above is one of three robotic paradigms in current

robotics theory. The other two are deliberative and hybrid. An architecture using a pure

reactive paradigm tightly couples sensor input and action. The robot does not plan nor retain

world knowledge; it simply reacts to whatever its sensors tell it at that moment. Reactive

architectures are best applied to dynamic environments because they do not derive a specific

3 The KISS Institute for Practical Robotics Botball and RoboCup tournaments, for instance.
4 See the 2001 and 2004 AAAI Spring Symposium on Robotics in Education conference notes and IEEE
Robotics & Automation Magazine. vol. 10, no. 2. June 2003 and vol. 10, no. 3, September 2003 for IEEE
special issues on robotics in education.

5

control plan. Conversely, they have difficulty completing specified goals. This is the

architecture for which the inexpensive platforms are known, as a strong coupling of sense

and reaction does not require a lot of memory or processing power. An architecture based on

a pure deliberative paradigm maintains world knowledge, gathers input from its sensors and

plans its next move based upon what it knows about the world around it. The storage

requirements for world knowledge and computing resources required for planning algorithms

make this approach much more processor and memory intensive in most cases. However, it

tends to be much more efficient at completing goals than the reactive architecture when the

environment is static. It is less efficient in a dynamic environment that forces frequent

replanning. A hybrid paradigm refers to an architecture using a combination of reactive and

deliberative to best achieve the task at hand [1],[12].

Purpose of the Project

This project demonstrates that an inexpensive platform is capable of being used to

teach a deliberative robotic control that includes navigation and planning. Navigation

incorporates determining a goal location, planning a path to get there, maintaining knowledge

of where the robot has been, and maintaining present location within the world representation

[12]. Planning involves taking knowledge that the robot has acquired and using it to develop

a sequence of actions that achieve a goal [15]. To enable a more direct compare-and-contrast

of a deliberative architecture’s performance versus a reactive architecture’s performance, two

robots were developed. The two LEGO Mindstorms robots were built using standard pieces

with the exact same physical properties. One construct housed an RCX with a deliberative

software architecture, the other and RCX with reactive architecture programming.

6

Once development and testing of the two platforms was complete, the deliberative

robot design was used to teach robotics concepts of planning and navigation in an upper-

division class on artificial intelligence. To maximize the applicability of the results of this

project to Southern Illinois University Edwardsville and other universities, the project makes

use of the LEGO Mindstorms set, a commercially available suite of LEGO rotation, light,

and touch sensors, and C-like programming environments that can be obtained by

educational institutions free of charge.

7

CHAPTER II

RELATED WORKS

In the article, “Mobile Robot Labs,” by Lloyd Greenwald and Joseph Kopena [8], the

RCX and Handy Board5 are both being used to examine how far inexpensive robotic

technology can be pushed for teaching more advanced artificial intelligence and robotics

concepts. Similar to my project, advanced AI techniques are being used such as map-based

path planning. Further, deductive reckoning is the approach being taken for localization.

Interactive C (IC) is also being used as the software development platform. Unlike this

project, other advanced techniques are being explored – such as Bayesian representation,

resource-bounded reasoning, and real-time control. The Handy Board and third-party sensors

are the primary focus and a website reference is given for substituting the LEGO RCX for the

Handy Board. However, third-party sensors are still required.

“6.836 Final Project: Evolution in the Micro-Sense: An Autonomous Learning

Robot,” by Chuang-Hue Moh [11], is another project that explores ways to expand the usage

of low-cost platforms for non-traditional, more advanced purposes. Specifically, it examines

the use of genetic algorithms (GAs) on a RCX platform to enable the robot to learn. Besides

the use of GAs, the project also differs from mine through its use of a reactive architecture

for motion behavior, not deliberative path planning and navigation.

5 The Handy Board is an open platform microcontroller system. It is capable of running four motors and has
inputs for 16 sensors (analog and digital). More information may be found at http://handyboard.com.

8

Dr. Dean Hougen’s “Hybrid Deliberative/Reactive Systems” [9] is an undergraduate

student project for developing hybrid robotic architectures. Students are requested to design,

build, program, and demonstrate a robot that efficiently acquires a target and returns it to the

robot base station. The robot is given some a priori data and unknowns exist. This is very

similar to the deliberative robot in my project and the implementation plans for applying the

results of this project to an introductory robotics lesson. In addition, the project uses the RCX

and IC for software. Unlike my project, this project makes use of the Handy Board,

potentiometers, photoresistors, and other non-standard LEGO components. Again, my

project focuses strictly on the LEGO RCX brick and standard LEGO building components.

Each of these projects further demonstrates the educational community’s interest in

exploring just how far inexpensive platforms can go. However, a number of projects turn to

the Handy Board due to the LEGO RCXs limitations in memory and sensor ports. But, the

RCX remains the easiest platform to use for students and instructors not desiring to delve

into the technicalities of sensors and soldering based upon its plug-and-play ports. It’s for

this reason that this project is unique. This project seeks to push the LEGO RCX and

standard LEGO components as far as they can go. The goal is to understand what the system

can do and then incorporate what is learned into the curriculum so that students can use the

platform to continue their education beyond the platform’s apparent current means.

9

CHAPTER III

ARCHITECTURE

Model

To demonstrate the deliberative robot’s ability to navigate and plan, we needed a

goal. Animal behavior provided a template for the design of both of the robots and something

for comparison of the results [1]. The robots for this project were modeled after a foraging

animal. The robots’ purpose became a fetch and retrieve mission. The robots’ goal was to

gather as many targets as efficiently as possible and return them to the starting area.

Efficiency, in this case, emphasizes timeliness in completing the task successfully. It was

also necessary for the robot to find its way around obstacles in its environment. From this

concept of the robots, their niche – an arena containing food and obstacles – was also

developed.

Current Architecture

To model the robots as foraging animals that could collect an item and return it to a

specific position, the robots required mobility, the ability to detect targets and obstacles, and

the ability to find their way back to the start location. Implementing the two different robot

paradigms – reactive and deliberative – required two very different approaches to logic

within the software. As mentioned previously, the hardware design was constructed to

support both of these software architectures. A number of software revisions and different

hardware architectures were developed over the course of the project and they are explained

10

here so that the reader may gain an understanding of the strengths and weaknesses of

different models for their own usage.

Reactive paradigm software architecture

Five distinct phases emerged while designing the software for the reactive robotic

paradigm – finding a goal item (a target), acquiring it, bringing the target back to a set

location, releasing the target, and avoiding any obstacles encountered while executing the

other behaviors. To detail the transition between these phases, a Finite State Acceptor (FSA)

Diagram was developed (See Figure 3, below, and associated Table I, below). Note that the

reactive paradigm robot does not have a specific end state. Once it successfully returns a

target to the designated location, it goes back out and searches for another. Each of these

phases was coded as a separate behavior. The interaction between these behaviors is shown

as a Suppression Arbitration Network (SAN) (Figure 4, below). What the SAN illustrates is

that a behavior with a higher priority overrides, or suppresses, the output of the behaviors

below it. This is done without the lower priority behaviors knowing that their output is being

suppressed. Mechanically, none of the behaviors directly control any of the robots sensors or

effectors. An independent process acts as arbitrator. It reads the sensor inputs and makes

them available to the other processes. The behavior processes set flag variables stating their

desired output. The arbitrator then sets the highest priority behavior with a desired output to

become the robot output – using motors, reset encoders, and switching state on internal state

variables.

The reactive paradigm robot maintains no world knowledge. It uses a direct SENSE-

ACT approach [1]. When the robot first starts, it records the average value of the ambient

11

light source and a target light source. Values are maintained as a percentage (0 – 100) with

100 being the brightest light source. Raw sensor values could not be used, as the readings

were unstable with the default firmware. The robot begins with no knowledge of its location

within the arena and retains no data about what it has sensed or past actions. The one

exception to this is one internal state variable that stores the position of the target trap arm

(up or down). The reactive software employs the use of the timer function in the RCX to

generate random numbers that determine the robot’s direction and amount of movement.

This prevents the robot from establishing a pattern in corners and other symmetrical areas,

which may lead to the robot becoming stuck in that area. If the robot has no target, it exhibits

a foraging behavior and randomly moves about the arena. If the light sensor detects a target

while foraging, the robot changes its behavior to acquiring the target and moves directly

toward the lit target. If the light level falls back below a threshold determined to be a target,

then the robot does a quick pan by turning to the left and right. If the light is seen again, the

robot again moves straight forward. If the light is not seen during the pan, then the robot

resumes the foraging behavior. When the robot senses that the target light level is very high,

indicating a high-probability that the lit target is in the target trap, the robot lowers the trap

arm. This completes the acquire behavior. The return behavior then searches for the place to

return to using a Marco-Polo algorithm. The robot emits an infrared signal, “Marco.” If a

second RCX at the return location – referred to as “Home” – detects the Marco signal, it

emits a signal back to the robot, “Polo.” If the robot detects the Polo signal, it assumes that it

is facing the return location and moves forward. This behavior repeats until the robot no

longer receives the Polo signal or it impacts Home. If the robot does not receive the Polo

12

signal, it randomly turns and moves about, resending the Marco signal until it again receives

Polo. This approach physically drives the robot directly into Home. However, the Home

RCX is fitted with a bumper to detect the robot’s impact and emits an “At Home” signal

when it occurs. The robot releases the target upon receiving an At Home signal by backing

up, nudging forward to ensure that the target is not against the trap arm, and lifting the trap

arm. Before the release behavior completes, it then turns the robot around about 180 degrees

to allow a human time to retrieve the released target and prevent the robot from trying to

recapture the same target. The robot then exhibits the forage behavior once again. If the robot

impacts an obstacle, causing the touch sensor to be depressed, the avoid obstacle behavior

takes control. When an obstacle is impacted, the robot backs away slightly from it and then

turns a random direction and random amount between approximately 30 and 90 degrees.

The internal state variable that monitors the target trap arm is used to prevent the

return home and release target behaviors from assuming control when inappropriate. While a

constant check of target light level might have been used, it was unreliable as the target’s

light level fluctuated too rapidly due to battery problems (See “Problems encountered with

the current architecture”, below).

13

Figure 3: Finite State Acceptor Diagram

not-at-home

no-target-found

Release-
target

have-target

other

Home

Forage

find-target

target-
released

Acquire-
target

Return-
Home

target-gotten

target-found

forage-obstacle-
found

Avoid-
obstacle

return-obstacle-
found

return-obstacle-
avoided

forage-obstacle-
avoided

another-
obstacle-found

at-home

14

 Table I: Finite State Acceptor Diagram

δ Q input δ (q, input)
 Home have-target release-target
 Home find-target forage
 Home other home
 Forage target-found acquire-target
 Forage forage-obstacle-found avoid-obstacle
 Forage no-target-found forage
 acquire-target target-gotten return-home
 avoid-obstacle forage-obstacle-avoided forage
 avoid-obstacle return-obstacle-avoided return-home
 avoid-obstacle another-obstacle-found avoid-obstacle
 return-to-home at-home home
 return-to-home return-obstacle-found avoid- obstacle
 return-to-home not-at-home return-to-home
 avoid-return-obstacle return-obstacle-avoided return-to-home
 release-target target-released home

Figure 4: Suppression Arbitration Network

Highest

Obstacle Found

Have Target
and at HOME

Target Found

Have Target and
not at HOME

(Default)

Avoid Obstacle

Release Target

Return HOME

Acquire Target

Forage

P
e
r
c
e
p
t
i
o
n

P
r
i
o
r
i
t
y

Behavior
Response

Lowest

15

The reactive paradigm software is programmed using Dave Baum’s Not Quite C

(NQC) version 2.5 R1. It is a C-like programming language that uses the LEGO Mindstorms

firmware [3]. The language was originally used based upon availability and documentation at

the start of the project. Due to limited program space, the programs for both software

architectures were ported to Interactive C. However, unexplained, erratic light sensor

readings were encountered with the reactive architecture software using IC. Thus, the final

version of the reactive robotic software was built using NQC. A copy of the reactive robotic

code may be found in Appendix F.

Deliberative paradigm software architecture

The deliberative robotic paradigm software is very functionally oriented. There are

two main processes that run concurrently – one that goal searches and retrieves the goal

targets and the other that looks for unknown targets and obstacles that cause plan failure. The

Retrieve Goals process uses functions that are sectioned by purpose into initialization,

cartographer, navigator, and pilot. The first, the initialization functions, calibrate the ambient

and target light levels (similar to the reactive design). For improved accuracy, the raw light

values were used, giving a range between 100 – 1000 with the lower values normally

indicating a brighter light source. The initialization functions also receive user input to build

an a priori6 map, including known targets, known obstacles, and robot starting position and

heading. The cartographer functions build and maintain the robot’s world map – a grid stored

as a two-dimensional array. The navigator functions build the robot’s plan for capturing the

6 A priori: Information known independent of experience.

16

known targets. It uses a wavefront algorithm (see Appendix A) to generate a path. The pilot

functions are the formal motor output functions that make the robot interact with the physical

world. The robot is programmed to move horizontally and vertically. It changes direction by

turning in place. The robot also possesses a target trap arm – which can be raised and

lowered – that prevents a target from exiting the trap when the robot turns or backs up.

The deliberative paradigm robot uses a cyclic SENSE-PLAN-ACT approach [1]. The

robot uses arrays to store representation of its world – the arena, the known obstacles, and the

known targets. The a priori information is used to develop the robot’s initial plan to move

from its current location to the nearest goal. The plan is stored as an array of successive grid

coordinates through which the robot should travel. As the robot progresses through the plan,

it senses its environment through the touch sensor connected to a front bumper and the

forward-looking light sensor for an indication of plan failure. If either indicates an object is

present where none is expected, the robot backs up to the grid it previously occupied and the

current plan is scraped; knowledge of obstacles and goals is then updated as appropriate. The

robot then rebuilds the map and creates a new plan from its current position.

Object information is placed onto the grid each time a map is built. The map grid

starts as an empty 2-dimensional array. The hard coded edge obstacles (arena boundaries) are

placed into the grid as the other spaces are cleared. Then, the program traverses an obstacle

location array and inserts the known obstacles onto the grid. The robot’s heading and

position are maintained in variables. If the robot is using the path-planning algorithm to

determine the closest target, targets are represented as empty spaces. This prevents targets

from becoming unreachable if located behind other targets in a corridor. However, when the

17

robot plans a path to a specific target, the other targets are represented as obstacles during the

path-planning process to prevent the robot from running through their grid space and

possibly knocking them out of the way.

Once the map is built, the robot uses a wavefront algorithm to find the closest known

target (target priority is based upon proximity to the robot). The robot finds the closest target

by propagating the wave throughout the arena and then evaluating the value of the space

occupied by the target in question. It does this for each known target and the closest target

(the one with the lowest value) is maintained as the current closest target. To conserve

memory, the grid values resulting from the wavefront propagations are not saved. Thus, once

the closest target is found, the wavefront algorithm is run again for just that target. Then, a

path generator follows the wave propagation from the robot to the target, saving the grid

coordinates of each step. Once a path is generated, the robot follows the path. The robot

maintains its current heading as it advances. To execute each step of the plan it first

determines if it needs to turn left or right; using its turn rotation sensor to execute the motion

as required. It then moves straight to the next coordinate in the plan using its linear rotation

sensor to determine proper distance.7 To account for gear slop and improve localization, the

robot maintains which direction it last moved. It then adjusts the threshold values for its

rotation sensors accordingly. Once the robot reaches a target location, it stops and captures

the target by dropping the target trap arm. The wavefront algorithm is then used again to plan

a path back to Home. The robot follows the plan Home in a similar fashion. Once Home, the

7 See Hardware architecture, below, for calculation of rotation sensor ticks required for linear and turning
motion.

18

robot releases the target, turns around, and plans a path to the next nearest target, if any. If no

known targets remain, the robot stops.

The robot is capable of seeking multiple targets at once. But, since the wavefront

algorithm can only handle one goal at a time, objects on the grid have to be manipulated to

support whether the algorithm is being used to find the closest target or make a path to a

target. Storing object positions independent of the grid best supports this approach by

allowing positions of specific objects to be easily modified or added. As mentioned above,

when determining the closest target, the robot sets all other targets besides the one it is

looking at to empty spaces. Given that the robot maintains no goal knowledge except

location until the goal is determined to be the closest, it does not matter if the other targets

are set as a space or an obstacle when searching each target, as long as a contingency exists if

the robot cannot reach the target – a condition that’s possible if there is a target in the only

path between the robot and the current target. If the target cannot be reached, one can assume

it either cannot be reached at all or there is a closer target. However, if additional target data

is kept to improve performance when finding the next closest target, then the other targets

should be set to spaces to allow a truer measure of target distance from the robot and to

alleviate one target blocking another.

Once a target is captured, the robot plans a path Home. This is done because the robot

may have had a plan failure (such as finding an obstacle in its original path) prior to

acquiring the current target and following the existing path back may not represent the

shortest path from the robot’s current location to Home. For the purpose of planning a path to

Home, all remaining target locations are marked as obstacles. This is necessary since the

19

robot cannot sense other targets when one is in the target trap. Thus, a plan that did not

consider existing targets as obstacles may cause the robot to pass through another known

target’s location and knock it out of position, causing the robot’s plan to fail when it returned

to capture this rogue target.

A plan under execution can fail in three ways – an unknown obstacle is encountered,

an unknown target is found, or what was given as a known target is not there. For the first,

the robot ceases execution of the current plan when the bumper detects an obstacle. The Plan

Failure process then moves the robot back to the last occupied position and updates the

appropriate obstacle array. The Retrieve Goals process is then restarted, which recalculates

the closest target using the new data as the new obstacle may require a much longer path to

what was the closest target. The robot then automatically generates a plan from its current

location to whatever grid is determined to contain the closest target. Next, the robot executes

the new plan. The robot does the same for unknown targets except the robot can only detect

the presence of unknown targets while it is traveling to a target. If the robot has captured a

target, the captured target blocks the robot’s light sensor that it uses to detect targets. If the

robot finds that no target exists where it expects, it removes the target from its goal array.

Then, it determines the closest remaining target from its current location and plans a path to

it. If no further known targets exist, it stops.

A number of steps were taken to make the deliberative robotic paradigm program

easier to use and understand. First, it is programmed using Interactive C (IC) version 4.2. IC

4.2 was chosen because the C language is commonly used in a majority of courses at SIUE

and other universities. Second, it replaces the LEGO Mindstorms firmware with one that has

20

a much smaller memory footprint. The IC4 firmware provides a lot more memory space for

storing grid, obstacle, and target information, removing the need to resort to bitwise encoding

for a small arena. NQC resides on top of the existing LEGO firmware so does not offer these

benefits. Third, to ease the burden of maintaining localization, the robot was limited to

ninety-degree turns. No diagonal movement between grid spaces was allowed. Further, the

array contents represented grid vertices. Thus, obstacles and targets were assumed to occupy

the whole grid space. A copy of the deliberative robotic code may be found in Appendix G.

About LEGO hardware

The commercially available LEGO kits provide a number of motors and sensors for a

variety of different purposes. The current LEGO Robotics Invention System (RIS) includes 9

Volt (V) geared DC motors. The RCX output ports, strictly digital devices, control the speed

of these motors through Pulse Width Modulation (PWM). This means that the RCX always

outputs the maximum voltage but does so in pulses. The RCX sends these pulses every 8

milliseconds (ms). The length of the pulse over the 8 ms determines the duty-cycle. Thus, if

the pulse were 3 ms long, the duty-cycle would be 37.5% (3 ms / 8 ms = 0.375). The lowest

power is 1 ms in length while the highest power setting lasts the entire 8 ms. The longer the

pulse, the faster the motor shaft spins. The light sensor contains both a red Light Emitting

Diode (LED) that emits a visible red light and a clear phototransistor/receiver which allows

more current from the RCX to flow through as a stronger light source is detected. The light

sensors are not very efficient and drastically different readings can be obtained from two

light sensors under the same lighting conditions or from the same sensor under even slightly

different ambient lighting conditions. Note that the distance the sensor is from the target

21

surface can influence the latter as well. The light sensors are best used to detect a distinct

difference between a very dark object and a very light object; though a third mid-range color

can be detected if ambient lighting conditions are supportive. The rotation sensors measure

the amount of rotation on an axle. When the axle within the rotation sensor moves, it causes

it to pass through four different states, each generating a tick and enabling the RCX to tell

that the rotation sensor has been moved and in which direction. A full rotation of the axle

causes the rotation sensor to pass through each of these four states four times. Thus, each full

axle rotation will yield a count of 16 ticks. Gearing up from the wheel axle to the axle that

the rotation sensor is mounted on will improve the sensitivity of the sensor feedback by

increasing the number of revolutions of the rotation sensor axle for each rotation of the wheel

axle. However, the motor tends to have an average loaded angular velocity of 250 rotations

per minute (rpm) (350 rpm unloaded) and it was found that, using the standard RCX

firmware, the rotation sensors begin loosing accuracy below 50 rpm and above 300 rpm.

Thus, it may be best to directly mount the rotation sensor to the motor axle and gear down to

the wheel axle. Other firmware may yield different accuracies depending upon sample rates.

The touch sensors are simple on / off switches. When the sensor is depressed, current flows.

When released, the circuit is broken [3],[6].

Hardware architecture

The project hardware has two main components, the arena in which the robot moves

and the physical robot construct. The arena was designed around the robot and the goals of

the project. But, the robot itself underwent many modifications. As a result, certain aspects of

the arena’s design drove changes to the robot.

22

The arena had to provide enough space to support the project requirements but be

portable enough to allow for easy teardown. The arena was in a multifunctional room used by

other students and could not be left standing at all times. When erected, it had to fit on the

available table space, as floor space was limited. Further, the most convenient, continuous

surface to use was a 4’ x 8’ x ¼” sheet of board with a melamine coating. The melamine

coating also provides good traction to most LEGO rubber wheels. However, the laminate

tends to come off, especially if tape is used repeatedly on the surface. This led to

irregularities on the surface, which did occasionally hinder the robot’s navigation, though not

too significantly. They would likely cause a greater problem for robots using light sensors

that face downward. This board size also met the need for most grid sizes approximations

that the software could support.

Planning for the deliberative robot to use grid representation, initial estimates of the

robot’s turning requirements determined that a 10” x 10” square would work best. The

original language of choice was NQC. With the limited memory program memory available,

the arena size was restricted to a 4 x 6 grid. It should be noted that the arena included a

border of obstacles in the robot’s memory. Thus, internally, the robot stored a 6 x 8 grid. This

made the use of the wavefront algorithm easier. When the language was transitioned to IC 4,

it was unknown just how much memory would be freed. So, the original 4 x 6 physical grid

remained. This grid size proved to be adequate when considering the 5 – 10 second

processing time required to propagate the path-planning wave and the time required to

actually move the robot from one end to the other, due to the slower speed caused by gearing

the wheels down from the motor. This grid setup provided enough space to create open areas

23

and boxed canyons and was small enough that only a few obstacles are required to make a

one grid-space-wide opening.

The obstacles, being physical in nature, were built as required to ensure that the

robot’s sensor was impacted and that the obstacle would interfere as little as possible with the

other robot functions. Since the reactive robot did not have an internal representation of walls

around the arena, a physical one was built using Polyvinyl Chloride (PVC) piping. With the

robot’s target trap, its bumpers had to be built up, above the height of the targets, to prevent

the robot from mistaking a target for an obstacle. The obstacle wall was then built to stand a

couple of inches above the arena floor.

The unique bumper design on the robot created a number of problems for a

freestanding obstacle within the arena. To mimic the approach that the border obstacles took,

a mushroom-shaped obstacle was required, one with a central column and a cylinder lying

flat on top. However, none could be devised with the materials available that were also heavy

enough to withstand a robot impact and not move or topple. To compensate, the robot’s

bumper was extended forward, beyond the trap arm, so that it would trigger when the robot

ran into a vertical wall obstacle. These wall obstacles were constructed of cardboard boxes

filled with rocks and brick to prevent them from moving when the robot impacted them. The

obstacles were designed to be only 5” x 5”, 10” tall, and sit in the middle of a grid space.

This provided some allowance for the deliberative robot to be off center during its travels.

The ramification of this design was that it allowed the robot to fit between two obstacles in

adjacent grid spaces, especially diagonally. So, for runs involving the reactive robot, the

obstacles were placed on their side to cover a 5” x 10” portion of the grid space. Being hand-

24

constructed, the obstacles had tape on the outside to hold the seams together. Further,

because the boxes were made from much larger cardboard boxes, there were odd bows and

creases in the cardboard sides. The tape and irregularities on the obstacle surfaces routinely

caused problems for the reactive robot as it became stuck when its bumper would not

properly trigger. Revisions to the bumper alleviate most of these errors. The deliberative

robot, typically staying on course and only hitting the obstacles dead center, did not suffer

from these same problems. An example of the arena (with robot and targets) is shown in

Figure 5, below.

Figure 5: Arena Example

The robot’s targets (see Figure 6, below) were LEGO pieces with a square base and

round stalk rising up about 1 ½”. A 12 V lamp was placed on the top of the stalk and two

alkaline 12V batteries were placed in the square base. The 12 V lamp provided a very bright

light source for the robot to detect and enabled it to be detected from 20” to 30” away with

fresh batteries. The problem was finding a lamp and battery combination that would keep the

25

lamp well lit over long periods of a few hours. While many batteries can provide a lot of

milliamps well in excess of the power requirements for the lamp, they can only do so for

short periods at a time. After which, the light quickly dims and the battery is unusable for an

hour or so. The best-lit target that could be developed used a 12 V lamp and two 12 V

batteries in parallel. Placing the batteries in parallel doubles the current rather than the

voltage. Using this configuration, the target light source remained usable for about an hour

with minimal reduction in the luminescence of the lamp. However, the falloff at the time

when the batteries did cease to provide enough power was dramatic. As the robot calibrated

to the target light source, it was important to ensure that all targets were approximately the

same luminescence. If the target used for calibration is too bright, the robot fails to properly

capture a dimly lit target, thinking the source to be further out. Conversely, if a dim light

source is used to calibrate, then the robot closes the target trap too soon, missing the target

ahead. These problems only arise with the reactive robotic architecture. The deliberative

architecture moves the robot to where it believes the center of the target grid space is located.

It does not use the light to guide itself toward the target; it only checks if the light is actually

present in the trap when it arrives.

Figure 6: Lit Target

26

As mentioned previously, the robot hardware architecture is designed to support both

the deliberative and reactive software architectures. However, the deliberative architecture

levies much more stringent requirements to ensure successful localization. Therefore, the

majority of the hardware architecture was designed with the deliberative robotic paradigm in

mind.

Figure 7: “Diane / Rea”, The Current Architecture

The robot’s physical configuration (see Figure 7, above) is designed around its gear

train. A dual-differential system (see Appendix B) is used to ensure that the wheels travel at

equal velocities. Two motors are used, each connected to one of the differential shells. One

motor provides power for driving and the other for turning. By turning on one motor and

locking the other, it could be asserted that the wheels were rotating at the same velocity for

forward and reverse movement, or equal speed and opposite direction for turning. This

27

system allows a single axle to be used for both driving and turning. With a centrally mounted

axle, it allows the robot to turn in place. Additionally, by turning on both motors at the same

time, a turn with a turning radius could be generated, if desired.

Rotation sensors were required to provide deductive reckoning localization. The

LEGO motors were always set to maximum speed, as they do not provide enough power to

move a robot laden with the weight of an RCX unless a top speed, or near top speed, setting

is used. To avoid loosing accuracy on the rotation sensors by exceeding their angular velocity

maximum, they were geared directly to the motors with a 1:1 ratio. To gain more granularity

in the rotation sensor ticks, the axle was geared down from the motor to a 1:6 ratio. With 16

ticks per rotation sensor rotation, this provided 96 ticks per wheel axle rotation. This meant

that every tick equated to only 3.75° or, given a wheel circumference of about 95.5 mm, 1

mm traveled. While this provided much improved accuracy and torque to handle the loads, it

also caused the robot to move much slower.

When constructing the robot, a balanced design was created with motors on each side

of the body and the RCX positioned to help the robot rest on its skid plate in the back.

Further, the wheels were enclosed within the frame structure to ensure that the axle was

supported on both sides of the wheel. This design helped to avoid any unnecessary tilt or

motion that would lead to immeasurable errors. In addition, the compact, balanced design

made it easier for the robot to turn as the load was balanced both forward and aft of the

turning axle.

The target trap was designed around the targets. The light sensor is placed at the

optimal height to receive maximum luminescence from the target lamps. The width of the

28

trap is twice the width of the target stalk, allowing some room for error when trapping but

forcing the lamp to remain in the light sensor’s field of view. A trap arm was used to ensure

that the target did not slide out when the robot backed up or turned. To maintain the balanced

design, a third motor for the trap was mounted center on top of the robot. Rubber bands and

pulleys were used to transfer motion from the trap motor to the arm. This allowed a timing

function to be used to control the trap arm without having to resort to a sensor to determine

when the arm was in place. The time was purposely set a little long. When the arm was in

position, the rubber bands slipped on the pulleys. Unfortunately, the trap system obscured the

RCXs IR port, which sometimes made the robot miss an IR signal from the Home RCX. It

also added difficulty to the creation of an obstacle bumper system.

As stated previously, the bumper on the robot was designed to react to high obstacles

only. As a result, tall whiskers were placed on the robot. They were stiff enough to allow the

touch sensor to note the impacts but flexible enough that the robot’s movement was not

altered grievously by the impact. It should also be noted that the robot only had a bumper in

the front. Most rearward movement was very short distances and mostly into space from

which the robot just came. By removing the rear bumper, structural and code complexity

were reduced with minimal loss to operational capability. This enabled more processing time

for the other sensors.

Four sensors are required for the robot. A touch sensor is required to monitor the

bumper discussed above. Two rotation sensors monitor the linear and turning motions and

each required their own port. A port is also required for a light sensor to detect targets. With

only three ports on the RCX, multiple sensors on the robot were ganged together on a single

29

port. Because of the nature of how ticks are read, it does not appear possible to gang two

rotation sensors. It is even less feasible to gang a rotation sensor and light sensor. However, a

light sensor and touch sensor can easily be ganged and it is not too difficult to tell which

sensor input is being provided. When a touch sensor ganged with a light sensor is pressed,

the RCX (reading the sensor input as a light sensor) registers an extreme value indicating a

very bright source. For raw values, it is typically impossible to get the light sensor itself to

read such a low value, even with a bright light source shining directly into the light sensor.

However, if the light sensor is read as a percentage, the conversion from raw value to

percentage enables a very bright source to register as 100% - making it difficult to

distinguish between a bright light source and touch sensor impact. To prevent the target lamp

from registering as 100%, the trap was modified to maintain some distance from the light

sensor. Even with brand new batteries, the lamp only registers in the low-90s.

Detailed instructions on how to build the LEGO robot can be found in Appendix E.

Problems encountered with the current architecture

The most significant problems encountered while testing the robots was

environmental hardware related. The issue was maintaining consistent lighting from the

targets and trying to maintain the light level for any usable period of time. As mentioned

above, the 12V, dual-battery system provided much better results but it too gave out, often at

very inconvenient times. This issue plagued both design paradigms. The other problems are

paradigm related.

The most troublesome part of the reactive robotic paradigm was the use of IR

messaging. First, IR messages from Home were often misinterpreted because of the

30

reflection of the signal around the room or it was missed entirely. The later is expected to be

a result of both the trap motor mounted on top blocking some of the signal and the

positioning of the IR emitter and detectors within the IR port itself. The second problem was

trying to properly time the receipt of the IR messages within a multithreaded environment.

Wait delays and loop sizes all had a factor and numerous while statements had to include an

IR message check in the Boolean expression to ensure that a message was not missed.

The one issue with the deliberative robot was localization. It was typically successful

on single runs to the target and back. It was even successful going 1-way through a 16-step

“S-Curve” with seven turns. However, a lot of movement creates enough errors to throw the

robot off of its assumed position. The majority of these errors appear to develop during a

turn. Slippage of the wheels on the arena surface is assumed to be the biggest cause of the

errors. Irregularities in the surface are the other expected problems. This includes dirt, which

fell out of the obstacles that were using rocks for weight. The dirt and irregularities typically

caused the skid plate to jerk the robot at a small angle. While a small change in direction is

negligible initially, the errors increase as the robot moves along. To maintain proper

localization, after the robot dropped of each target, it was repositioned back at the center of

the start grid before it was allowed to continue to the next target.

Previous Architectures

 The robot’s software and hardware architectures went through a number of revisions

before the final design was reached. Each design increment offered improvements over the

previous and yielded important lessons to be learned from the design’s shortcomings.

31

First architecture, “Buggy”

 The first hardware architecture was modeled after a car with rear-wheel drive (See

Figure 8, below). While the 9 V motors are efficient, they are not always consistent with the

velocity derived from the same power input. This means that if one motor is connected to

each wheel, even if both wheels are set to the same speed, the robot is likely to turn, as the

motor outputs are not exactly the same. To make a straighter path, a differential was used to

ensure that the drive wheels had the same rotational velocity. A single motor powered the

differential shell and this, in turn, powered both wheels. A rotation sensor was connected to

the motor axle to measure distance traveled. To facilitate turning, a steering drive was created

for the front wheels. A second motor controlled the front wheels’ angle of turn. A rotation

sensor was also connected to the turn motor axle to measure angle of turn. In addition to

providing consistent angular velocity to both wheels during straight-line travel, the

differential also allowed the rear wheels to move independently during turns, reducing drag

across the wheel in the outside of the turn. While this model may offer some useful

experience with front-wheel steering, it also creates complexities undesirable for this project.

First, since Ackerman steering was not used – which allows the two front wheels to turn at

different angles – there was drag induced during turns on the front wheels. This meant that

one wheel had to slip and it was harder to ensure that the robot traveled in the desired arc for

a specific turning distance. Second, the turn angles and distance to travel for a turn had to be

calculated. Third, the large turning radius required a larger test area.

32

Figure 8: “Buggy”, The 1st Hardware Architecture

Second architecture, “Seeker”

To compensate for the turning problems with the first architecture, a robot that could

drive and turn off of the same axle was required. Thus, the second architecture with a dual-

differential drive was developed (See Figure 9, below). Since the rear axle now controlled the

drive and turning motion, a caster wheel was employed at the front for balance. Initial tests

proved this model to be successful. It greatly reduced the turning area required by turning

about the center of its rear axle and made turning calculations simpler. A slight problem

noted was that after a turn, the robot would waddle a little while the drag wheel straightened

out. The next step was to add a way to capture a target so that it could be returned to the

starting location.

33

Side View Bottom View

Figure 9: “Seeker”, The 2nd Hardware Architecture

Third architectures, “Mantis” and “Trap”

 The third design employed a grabber arm to give the robot the capability to capture a

target (See Figure 10, below). The second architecture’s base was elongated to accommodate

the motors and structure for the arm. Two motors were required – one to raise/lower the arm

and one to capture/release the target. With a requirement for four motors and only three

output ports on the RCX, a non-commercial multiplexer called a “backpack” was used.8 The

backpack had three states controlled by output port A. Each state allowed three different

input ports and two different output ports to be active. This worked well for this design as

when the two target capture motors were needed, the two drive and turn motors were not

being used. Also, as a single caster wheel design proved unstable, a dual-caster system was

used. With a working robot design, an arena was constructed. The lit targets were also

devised. They originally looked like a 2” tall dumbbell standing on end and housed a small 3

8 The “backpack” was developed and provided to this project courtesy of John Barnes.

34

V penlight and two 1.5 V N-sized batteries in the base. The design worked but suffered from

the extreme weight added by the grabber arm. Further, there was a lot of difficulty getting the

initial target lamp design to remain lit for any sufficient amount of time. Even when the

target was properly identified, it was difficult to get the robot into the correct position to pick

up the target. This was due to the long distance between the turning wheels and the grabber

arms. While the rotation sensors on the wheels perceived they had moved only a small

distance, the arc length of the distance the grabbers traveled was much greater – often

overshooting the target. Also, if the target was dropped in the middle of pick up, it often fell

over, leaving the robot very little chance of reacquiring the target given the sensors and the

configuration of the lift arm grabbers. Once a target was acquired, the robot would seek an

Infra-Red (IR) signal from another RCX near the starting location. The robot would send an

IR signal back – something the base RCX would only see if the robot were facing toward it.

Once this second signal was detected, the base robot would change its signal, indicating to

the robot that it should move forward. If it lost the robot’s signal, it would return to

transmitting the original signal. This would indicate to the robot that it was no longer headed

toward the starting location. The robot would then react by randomly moving about and

resending its signal until the base RCX once again responded with the appropriate second

signal. This IR version of Marco-Polo was used to guide the robot back to the starting

position. However, it is not always as easy as following a straight-line course. As when the

robot first went searching for the targets, it would have to avoid any obstacles on its way

back. A problem that occasionally occurred is that the robot would bump into the target and

react to it as if it were an obstacle. As long as the target remained upright, this posed no

35

problems. However, it would fall over half the time, resulting in a similar situation as when

the target was dropped during pick up.

Figure 10: “Mantis”, The 3rd Hardware Architecture

The issues mentioned in the previous paragraph were managed by modifying the

existing hardware architecture. To reduce the extra weight, the grabber arm was replaced by

a trap mechanism (Figure 11, below). Guided by the light sensor, the robot would move

toward the target with a wedge shaped trap. Once near, the target would slide into the trap as

the robot moved forward. As the robot neared the lit target, the light intensity value

increased. When the light sensor detected that the target was close enough, a single trap

motor would lower an arm in place to ensure that the target did not slide out during turns.

Since the robot no longer had to pick it up, the target’s top platform was removed and round

bricks were used for the central column to enable the target to slide into the trap regardless of

what direction it was encountered from. This gave the target its current shape as shown in

Figure 11, below. To alleviate the possibility of the target being knocked over by the robot,

the front bumper was modified to be higher than the base of the target. If the bumper

36

encountered the top of the target, they would go around each other. In case the target went

toward the outside of the robot, angled pieces were placed so that the target would slide

across the robot’s side, to be picked up later. While this version of the hardware architecture

had all of the essential pieces required to make it useful, a number of problems remained that

still prohibited its success.

Figure 11: “Trap”, Revised 3rd Architecture

These problems stemmed from the fact that the last two revisions were extensions of

the second architecture rather than a complete redesign. The first problem was that the

turning axle was still located at the very rear of the robot. Even when the added weight of the

grabber arm was removed, the wheels at the very back had to create a large moment to move

the structure (See Figure 12, below). Think of a very heavily loaded shopping cart and trying

to turn it from the handle alone. This required a lot of power and often resulted in the wheels

slipping – yielding an incalculable amount of error. Even when the robot did turn correctly,

the dual-caster system induced more error as the caster wheels straightened out when the

37

robot moved forward after a turn. Second, the rotation sensor was geared 1:1 with the

movement axle. This meant that every tick of the rotation sensor equated to 22.5 degrees of

turn. The rear axle is 9.25 inches from the front. This means that the front could stop up to 3

inches from target position and the error would be undetectable. Next, the two main wheels

were mounted to the robot structure inward of the two wheels. Outside of the wheels is free-

floating. The LEGO axles tend to be flexible and any heavy weight (like the RCX loaded

with 6 AA batteries) will cause them to bend (See Figure 9 “Bottom View”, above, and

examine the rear wheels). This bending causes the robot to deviate from its desired path and

the error is typically incalculable. Lastly, with the increased length due to adding the target

capture arm, the area required for turning was once again very large. The robot’s length was

about 10 inches. For a 180-degree turn, the grid spaces would have to be twice that (20 in).

Thus, for only a 6 x 4 grid space, the robot would require an arena that was at least 10 ft x 6

ft 8 in. To correct for these errors, the next robot hardware design was built from scratch with

elimination of these errors in mind.

38

 A moment arm is defined as the perpendicular distance between the line of action of a
force and an object’s axis of rotation.

Moment (in*lb) = Force (lb) * Moment Arm (in) (Equation 1)

Force (lb) = Moment (in*lb) / Moment Arm (in) (Equation 2)

 The same amount of force is required to overcome the coefficient of friction and move the
robot. So, as the moment arm length increases, the moment itself must increase. In this case,
the moment is the rotational movement caused by two wheels turning in opposite directions on
the axle. Thus, to increase the moment, power to the two wheels turning must be increased.

Figure 12: Moments Explained

Force Moment Arm

Axle Wheel
Rotation

Axis of
Rotation Center of

Caster Wheels
or Skid Plate

Moment

Fourth architecture, “Balanced”

The ability to turn in place is the biggest change to the fourth hardware architecture

(See Figure 13, below). The single drive and turning axle was moved to the center of the

robot while the dual-differential gear assembly expanded to the rear. Further, the motors are

placed on top of the dual-differential assembly instead of fore and aft, making the robot

shorter. Further, it enabled the creation of a gear train with a 3:1 ratio between rotation sensor

rotations and drive axle rotations, allowing for 48 ticks per rotation (7.5 degree error). The

RCX was placed to set the center of gravity of the robot just aft of the drive axle so that it

39

would rest nicely on a skid plate. While some kneeling did occur if the robot stopped

abruptly, no errors such as slippage of the wheels was found due to this phenomena. The

weight, bearing directly down on the center axle, also helped to reduce any slippage on the

wheels even under a heavy load. Further, the wheels were mounted between two frame

components. This eliminated the errors associated with the bowing of the axle. It is important

to note that to make framing the wheels effective, some load must be transferred to the

outside wheel frame or the horizontal pieces must be made sturdy enough such that the

outside frame itself does not bend upward under load. The effect was such that the robot

could turn in place, toward any direction and then move forward, avoiding positioning

calculations for movement with a turning radius. Another modification to the fourth

architecture is that the trap motor was removed. Additionally, the trap was redesigned to take

advantage of the existing target’s shape so that it would remain in the trap during turns.

Finally, the backpack was removed to remain consistent with the original plan of using only

commercial off-the-shelf pieces.

Side View Bottom View

Figure 13: “Balanced”, the 4th Architecture

40

With an earlier version of the return home behavior in the current architecture, the

forward facing light sensor often interpreted any messages from Home as a bright light

source if the robot was close. So, the robot would charge into Home trying to get the elusive

target. While changing the height of the Home RCXs IR port helped a little, it did not

alleviate the problem entirely. The problem was that, originally, Home constantly emitted an

“over here” signal. When the robot entered into the return home state, it would look for this

signal. This was modified to the Marco-Polo algorithm described above. Thus, Home now

only emits a signal while the robot is using the return behavior.

41

CHAPTER IV

RESULTS

Test Run Results

To emphasize the capabilities of the deliberative robotic architecture and assess its

weaknesses, a series of test runs were conducted to compare the performance of the reactive

robotic architecture with the deliberative one. Six different arena layouts were developed

with three general formats. The formats were a simplistic model with obstacles in the center;

an S-Curve composed of a single, long corridor that meandered the whole arena; and a Box

Canyon, an area with only one entry/exit with which reactive robotic architectures typically

have some problems navigating. There were two obstacle approaches to each format – static

and dynamic. The obstacle approach means very little to the reactive robotic architecture,

which retains no world knowledge. However, for the deliberative robotic architecture, a static

obstacle environment means that the a priori data contains the location of all obstacles

throughout the entire run. In the dynamic obstacle runs, the deliberative robot is given the

location of some of the obstacles or an obstacle may be removed. In short, the deliberative

robot’s plan is forced to fail somewhere during the run. All six of the arena layout patterns

are presented below in Figure 14. A picture of each arena configuration is shown in Figure

15, below.

The reactive robotic architecture successfully completed only the Simplistic courses.

The robot frequently got stuck in corners and box areas; though random timing functions did

help it to work its way out. However, this consumed a lot of time. After 20 minutes, the S-

42

Curve and Box Canyon tests were deemed unsuccessful. It appears that the complexity of the

other courses, with numerous turns, offered too difficult a challenge for a random motion

robot. Had the reactive architecture used a wall-following technique, the results may have

been more favorable.

The deliberative robotic architecture successfully completed all courses. The

Simplistic courses were completed in much less time than it took the reactive robot, even

with approximately 10 seconds per path planning event. As the robot followed the plan,

localization remained somewhat accurate with severe errors only arising over long runs or

runs with a lot of turns. To compensate, the deliberative robot’s code was modified to stop

after each target was delivered to allow the user to realign the robot. Other error corrections

including nudging the target within a grid space to ensure it would be properly captured

when the robot arrived. As the focus of the project was to understand the limitations of the

deliberative robotic architecture using the RCX, it was felt that the robot should not be

allowed to completely fail a course if the localization kept the robot at least within the same

grid space. A drawback of the deliberative robotic architecture is that it is less likely to find

unknown targets that are away from paths to known targets. With this in mind, after the

deliberative robot completed the test runs, it was concluded that the RCX could be

successfully used as a teaching tool with some modifications to the robot and exercise

requirements.

43

Simplistic, Static Simplistic, Dynamic

Box Canyon, Static Box Canyon, Dynamic

S-Curve, Static S-Curve, Dynamic

Key: G – Known Goal, G – Unknown Goal, S – Start Location (arrow indicates heading)
 – Known Obstacle, – Unknown Obstacle

Figure 14: Arena Layout Patterns for Test Runs

G

S

 G

 G

G

S

 G

G

S

G

G

G

S

G

G

S

G

G

S

 G

G

44

a) Simplistic, Static b) Simplistic, Dynamic*

c) Box Canyon, Static d) Box Canyon, Dynamic*

e) S-Curve, Static f) S-Curve, Dynamic*

*Note: Green obstacles in dynamic arenas are unknown to the robot at the start of the run.

Figure 15: Project Arena Layouts

Classroom Application

Once it was determined that the deliberative robotic paradigm could be successfully

implemented on the LEGO RCX, plans were made to incorporate material into SIUEs

introductory artificial intelligence course. The course already uses the RCX to teach

45

introductory robotics but all of the laboratory assignments use the reactive paradigm. New

instruction was designed to allow for both reactive and deliberative robotic assignments. The

material was presented to a class of 23 students during the Spring 2003 semester.

Lectures and robotics projects

The robotic material involved five lectures and assignments (see Appendix C). The

first lecture covered the basics of what a robot is, discussed the LEGO RCX platform, the IC

software environment, and LEGO building components and techniques including sensors,

motors, gearing, and structural considerations. Students were also given their first robotics

assignment.

The second lecture covered reactive robotic architectures. The lecture included

discussions on SENSE-ACT, emergent behavior, the pros and cons of reactive control, and

behavior coordination. A class exercise, requiring 4 students, was also conducted. One

student serves as the visual system, another decides the actions, and the other 2 each serve as

a single arm. For this exercise, the student who declares the actions is blindfolded and the

two students acting as arms are seated in front of a table. On the table are three boxes. The

goal of the task is to have the students stack the three boxes on top of each other, in order of

size. The action generator may only ask questions of the visual system and may only give

commands to the arms. The intent is to provide students with an idea of how sensors,

processors, and actuators are separate entities and some of the challenges of coordinating

their actions to complete a goal. At the end of the lecture, the second robotics project was

handed out.

46

The reactive robotic paradigm instruction continued during the third lecture. The

topic of behavior coordination was completed. Potential fields, animal behaviors as models

for reactive control, FSA diagrams and Stimulus-Response diagrams were discussed. At the

end of lecture, the students openly discussed and completed a sample FSA problem in class.

The fourth lecture introduced deliberative robotic control. The lecture included a

comparison between deliberative and reactive robotic control, SENSE-PLAN-ACT, world

models, knowledge representation, the pros and cons of deliberative control, short-term

memory versus long-term memory, and wavefront planners. There was also a brief

discussion on hybrid control and different approaches to fusing reactive and deliberative

parts. An in-class demonstration involved setting up a short maze of chairs in the classroom.

A student volunteer was allowed to count steps and create a plan for following the maze.

Then, the student was blindfolded and had to execute the plan. During execution, the maze

was modified. A second individual and the instructor spotted the student to be sure no one

was hurt. The demonstration highlighted the SENSE-PLAN-ACT process. In retrospect, the

example may have been made safer by repeating the box stacking demonstration but with one

student. The student would be allowed to see the location of the three boxes and make a plan

for stacking. During execution, the student would be blindfolded and two boxes would be

switched.

The final lecture focused on localization and the development of a deliberative

robotic control. The localization information discussed both landmarking and deductive

reckoning. The development topics included a walkthrough of how a deliberative architecture

might be created. This project’s robot was used as a model.

47

Students were divided into teams of two for the robotics projects. IC4 was used as a

programming language. IC4 uses a runtime machine language module. It replaces the

standard LEGO firmware with its own firmware that has a smaller memory footprint. This

freed up program memory space for the deliberative program’s world map. Since most of

SIUE programming courses use the C programming language, the students were already

familiar with the syntax.

The intent of the first project was to familiarize the students with the robot-building

environment and garner further interest in robotics through a competition during

demonstrations. Students were required to build a line-following robot and demonstrate that

it could follow a meandering black line. Bonus points were given to the team that could

successfully complete the line-following project in the least amount of time.

The second and third robotics projects were designed to mimic the foraging robots

created for this project. The second involved development of a reactive robot and the third, a

deliberative one. However, the scope of the effort was much reduced to ensure that the focus

was on the topics being taught. This included making targets and obstacles colored tape on

the arena floor. Thus, both could be sensed with a single, downward-looking light sensor.

Since the targets were tape, they were no longer required to be returned to a starting position,

simplifying the construction of the robot by not requiring a target trap and reducing

programming complexity by not requiring a return trip. Given the localization capabilities of

the robot, it was felt that a return trip would compound errors, reduce the students’

satisfaction with their results, and provide nothing in terms of a better understanding of

localization and planning that could not be gotten from the trip to the target.

48

Given the revised approach, students were assigned the task of designing, building,

coding, and demonstrating a reactive foraging robot for the second project. The robot was not

allowed to cross obstacle lines and had to provide an audible indication and stop when it had

found a target. It should also be noted that the arena contained physical obstacles as well.

This required the students to create bumpers with a touch sensor. The intent was to require

them to become familiar with multithreading in the IC environment. Having two different

sensors required them to monitor both as the robot moved about the arena.

For the third and final robotics project, students had to develop a deliberative robotic

architecture that could successfully plan and navigate to a target. While students were told

about the upcoming deliberative project and recommended to build a hardware architecture

for the reactive assignment that could be reused, most had to rebuild the robot to meet the

more stringent requirements required for localization. It should also be noted that the

deliberative tests only involved one known target and included the dynamic additions of

unknown obstacles and targets. When an unknown obstacle was encountered, the students’

robots were required to stop, replan, and continue without passing through the new obstacle

grid space. When a new target was encountered, the robots were required to audibly

acknowledge the new target but could continue to follow the plan through the grid space to

the original known target. As the robot localization was expected to be perfect, students were

allowed to give their robot a maximum of three nudges to ensure it did not veer to far off

course during the run. To encourage the students to consider as many of the causes of

localization errors as possible, bonus points were given to the team that used the least amount

of nudges.

49

Classroom results

The teams successfully built robots for all three of the projects. In most cases, it was a

different robot for each project. While having students build the robots is good for learning

first hand about the causes of physical errors and sensor limitations, building three different

physical architectures over the course of five weeks is a waste of valuable time the students

should be spending on understanding the concepts and implementing them via code. Many

students felt frustrated at having to start over or modify what already existed between the

reactive and deliberative foraging projects. Some students also mentioned some frustration

with the programming language.

As mentioned above, the students were required to use IC4 to program their robots.

The language was new to all of the students. However, they were familiar enough with C

syntax to learn the basics of IC4 fairly quickly. Most were able to properly make use of

multiple processes for the reactive and deliberative projects. The largest complaint from the

students was the lack of a debugging environment similar to what they had available to them

under Microsoft Visual C++.

Despite any complaints, all but a few students successfully demonstrated the ability to

understand, design, and construct a deliberative robotic architecture using the LEGO RCX

and standard LEGO components. In fact, during the deliberative demonstrations, at least four

teams mentioned that they took it as a challenge to use as few nudges as possible,

incorporating features such as accounting for gear slop when changing direction of motion.

Three of these teams used only one nudge while the other used none. All but one team was

50

ultimately successful in planning and navigating their robot to the known target while

avoiding all obstacles.

At the end of the robotics lectures and assignments, a feedback survey was handed

out to all of the students. The results showed that a majority of the students felt that the

lecture material and projects were worthwhile. They also stated that the deliberative project

helped them better understand deliberative robotic control. In one question, the students were

asked if a hybrid robotic control project would have been more appropriate. The intent was to

ask the students if a hybrid control project should have been done in lieu of the individual

reactive and deliberative projects. Responses indicated that the question was not phrased

well, as many students stated that they felt there is little time for another project along with

the other three. A more detailed summary of student responses may be found in Appendix D.

Conclusion

By using the LEGO RCX to develop a deliberative robot and allowing students to do

the same, it has been shown that the RCX platform and standard off-the-shelf components

are usable as an effective teaching tool for a introductory lesson in the deliberative robotic

paradigm. Most of the failures and difficulties of the project were a result of the constructed

environment and self-imposed complexities. In hindsight, the reactive portion of the project

added little to the support of the final results. The initial thought was that a comparison of the

two architectures would better explain the results. However, most people were at least

somewhat familiar with the reactive paradigm or at least what it embodied. Thus, in the end,

no direct comparison was really necessary. Omitting the reactive robot would have simplified

51

the arena and allowed more freedom in tailoring the hardware design for the deliberative

architecture. That is not to say that the deliberative robot would have worked perfectly.

One of the results frequently pointed out is that there was loss of localization even

with the added safeguards of reducing immeasurable errors such as accounting for gear slop

and using a balanced construction. This loss of localization is beneficial in demonstrating to

the students that the real world is a harsh place. Integrating a physical agent with a computer

program into the real world is no easy task. However, the robot can do the job well enough to

ensure that the basic concepts of what a deliberative robotic architecture is, is enforced in

their minds.

Along those same lines, the complexity levied on the project robots is not required for

student instruction. The revised, simpler assignment using colored tape was very effective

and offered enough of a challenge within the allotted time. If the project was made more

complex, such as by requiring the students to build a trap mechanism and drag a physical

target around the arena, it would have detracted from the core lessons of designing a robot

that could sense, plan, and act.

While the LEGO system can be designed to remove most immeasurable errors,

deductive reckoning is only so reliable. Some external form of reference is required for

improved localization. The use of sonar or a compass sensor would greatly improve the

localization of the deliberative robot. However, this would be best left to a course in

advanced robotics or one where building such a sensor is part of the instruction. Enough

information exists on the web detailing construction methods and interface design into the

RCX to construct these sensors. The other option is to use a more powerful robotic platform

52

better capable of supporting these advanced sensors. For the content of SIUEs current

Introduction to Artificial Intelligence course, the standard LEGO suite is suitable.

Future Work

 Over the course of this thesis project, a number of features arose that would have

been nice to incorporate or may be useful to explore for future student projects. These are

listed below as a reference for those interested in pursuing them.

1. To reduce the time that students spend building robots during projects, change

the project format. The line following robot or a similar robot should remain to

allow the students an easy introduction to the hardware and programming

environment. However, the other projects should be combined. The assignment

should consist of a hybrid control architecture presented in two phases. The first

phase encompasses designing and building a purely deliberative control

architecture. The second phase integrates reactive control into the existing

deliberative robot. In this way, the students would build the second robot to the

more stringent deliberative robotic control requirements. The lectures would be

revised to provide deliberative control instruction before the reactive.

2. The current map is devised as a grid with obstacles and all other objects

occupying the grid vertex. If obstacles representation is changed to the edges

between grid vertices, then one-way paths could be developed. The drawback to

this approach is that for each vertex additional memory would be required to

retain the connection of each vertex.

53

3. Currently, when the deliberative robot finds a new target, it backs up, adds the

new target location to the goal array and then develops an entirely new plan,

including finding the closest target. The robot program should be modified to set

the newly discovered target as the closest target and plan from there. Or, if a

hybrid approach is to be used, allow the robot to capture the new target and

immediately plan a path back to the start position.

4. Once the current deliberative robot has returned the last known target to the

start position, it stops. The robot could be programmed to examine neighboring

grid spaces along its planned path for unknown targets. Alternatively, the robot

could maintain knowledge of which grid spaces it passed through for all target

runs and, after it has captured the last known target, devise the most efficient path

to explore all of the unknown grid spaces.

54

WORKS CITED

[1] Arkin, Ronald C. Behavior-Based Robotics. Cambridge: MIT Press, 1998.

[2] Baerveldt, Albert-Jan, Tommy Salomonsson, and Björn Åstrand. “Vision-Guided
Mobile Robots for Design Competitions.” IEEE Robotics & Automation Magazine. vol. 10,
no. 2. June 2003: 38-44.

[3] Baum, Dave, et al. Extreme Mindstorms: An Advanced Guide to LEGO Mindstorms.
Berkeley: Apress, 2000.

[4] Druin, Allison, and James Hendler, ed. Robots for Kids: Exploring New
Technologies for Learning. San Francisco: Morgan Kaufmann Publishers, 2000.

[5] Fagin, Barry. “Ada/Mindstroms 3.0.” IEEE Robotics & Automation Magazine. vol.
10, no. 2. June 2003: 19-24.

[6] Ferrari, Mario, and Giulio Ferrari. Building Robots with LEGO Mindstorms: The
Ultimate Tool for Mindstorms Maniacs!. Ed. Ralph Hempel. Rockland: Syngress Publishing,
Inc., 2002.

[7] [For Inspiration and Recognition of Science and Technology (FIRST)]. “Welcome to
the FIRST LEGO League: Sports for the Mind.” [Resource on-line]; available from
http://www.usfirst.org/jrobtcs/flego.htm; Internet; accessed July 2003.

[8] Greenwald, Lloyd, and Joseph Kopena. “Mobile Robot Labs.” IEEE Robotics &
Automation Magazine. vol. 10, no. 2. June 2003: 25-32.

[9] Hougen, Dean F. “Project 2 -- Hybrid Deliberative/Reactive Systems.” [Resource
available on-line]; available from http://www.cs.ou.edu/~hougen/classes/Spring-
2002/Robotics/materials/project2.html; Internet; accessed June 2003.

[10] Klassner, Frank, and Scott D. Anderson. “LEGO Mindstorms: Not Just for K-12
Anymore.” IEEE Robotics & Automation Magazine. vol. 10, no. 2. June 2003: 12-18.

[11] Moh, Chang-Hue. “6.836 Final Project: Evolution in the Micro-Sense: An
Autonomous Learning Robot.” [Resource no longer available on-line]; previously available
from http://www.pmg.lcs.mit.edu/~chmoh/836-project/final_report.pdf; Internet; accessed
June 2003.

[12] Murphy, Robin. Introduction to AI Robotics. Cambridge: MIT Press, 2000.

55

[13] Piepmeier, Jenelle A., Bradley E. Bishop, and Kenneth A. Knowles. “Modern
Robotics Engineering Instruction.” IEEE Robotics & Automation Magazine. vol. 10, no. 2.
June 2003: 33-37.

[14] Resnick, Mitchel, et al. “Digital Manipulatives: New Toys to Think With.”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
[Association for Computing Machinery].18-23 April 1998. 281-287.

[15] Russell, Stuart, and Peter Norvig. Artificial Intelligence: A Modern Approach. Upper
Saddle River: Pearson Education, Inc., 2003.

[16] Weinberg, Jerry, and Xudong Yu. “Robotics in Education: Low-Cost Platforms for
Teaching Integrated Systems.” IEEE Robotics & Automation Magazine. vol. 10, no. 2. June
2003: 4-5.

APPENDIX A

WAVEFRONT PROPAGATION ALGORITHM

57

WAVEFRONT PROPAGATION ALGORITHM

The wavefront propagation algorithm is a path-planning algorithm. It is most easily

applied to maps using graph representations. Typically, the algorithm treats the grid as a

conductive material. Heat radiates from the initial space to the goal space. Obstacles have a

conductivity of 0. The conductivity of other items varies dependant upon the ability to

traverse the area. The benefits of using the wavefront planner are that it is simplistic and not

very memory or processor intensive. Its drawbacks are that it is not very efficient; every node

needs to be visited to find the most optimal solution. Additionally, more than one path

usually results [12].

This project uses a variant of the wavefront propagation planner. First, the goal with

the shortest path between it and the robot is found. Then, before wave propagation, the

obstacles and closest goal location are each assigned a unique value – 1 and 2, respectively.

The wave then starts at the goal coordinates and propagates outward from that point. For this

project, the robot could only move vertically and horizontally. Therefore, the wave

propagation was restricted to the same directions. Each non-obstacle grid coordinate is

assigned a value based upon distance from the goal location (usually in increments of 1).

When wave propagation is complete, the robot’s current position should have a value

assigned to it. From there, the robot follows a path of decreasing value back to the goal

position. The pseudocode for the project’s wavefront algorithm is shown in Figure 16, below.

An example follows in Figure 17, below.

58

1 WavefrontPropagation(Grid[])*
2 updates = TRUE
3 while updates = TRUE
4 updates = FALSE
5 for each Grid[row, col]
6 if Grid[row, col] > 1
7 if Grid[row-1, col] = 0 or
 Grid[row-1, col] > Grid[row, col] + 1
8 Grid[row-1, col] = Grid[row, col] + 1
9 updates = TRUE
10 if Grid[row+1, col] = 0 or
 Grid[row+1, col] > Grid[row, col] + 1
11 Grid[row+1, col] = Grid[row, col] + 1
12 updates = TRUE
13 if Grid[row, col-1] = 0 or
 Grid[row, col-1] > Grid[row, col] + 1
14 Grid[row, col-1] = Grid[row, col] + 1
15 updates = TRUE
16 if Grid[row, col-1] = 0 or
 Grid[row, col-1] > Grid[row, col] + 1
17 Grid[row, col+1] = Grid[row, col] + 1
18 updates = TRUE

* Assumes Grid[] is pre-processed to include a goal coordinate set to 2, obstacles set to 1, and the
remaining grid coordinates set to 0.

Figure 16: Wavefront Propagation Pseudocode

59

0 0 0 0 0 0

0 0 1 1 0 2

0 0 0 1 0 0

0 0 0 0 0 0

0 0 6 5 4 3

0 0 1 1 3 2

0 0 0 1 4 3

0 0 0 6 5 4

a) Pre-propagation b) Mid-propagation

8 7 6 5 4 3

9 8 1 1 3 2

10 9 8 1 4 3

9 8 7 6 5 4

8 7 6 5 4 3

9 8 1 1 3 2

10 9 8 1 4 3

9 8 7 6 5 4

c) Post-propagation d) One Possible Path Generated

Figure 17: Wavefront Algorithm Propagation Example

Obstacles

Goal
Robot

60

APPENDIX B

DIFFERENTIAL GEARING

61

DIFFERENTIAL GEARING

A differential gear relays motion from an input shell to the summation of two output

axles. The purpose of the differential gear is to allow one wheel on the same axle as another

to move at a different speed when turning. This is required, for the outer wheel in a radius

turn travels further in the same amount of time as the inner wheel (see Figure 18, below). A

single differential is typically used in vehicles equipped with two axles – one containing a

steering mechanism and one that follows the turn (such as a car’s front wheels and rear

wheels, respectively). The differential is used on the axle that follows the turn. Without a

differential, the wheels on the axle that follows the turn would drag causing the wheels to

skid, and, in terms of robot localization, create immeasurable errors.

Figure 18: Radius Turn

s2

s1

θ

r1 r2

62

The length of an arc, s, is equal to product of the angle of the turn, θ (in radians), and

the radius of the wheel’s turn, r. Mathematically,

 nradn rs ⋅= θ . (Equation 3)

Rearranging Equation B.1, it is calculated that
n

n
rad r

s
=θ . Thus,

1

1

r
s

rad =θ and
2

2

r
s

rad =θ .

Since the angle, θ, is the same for both wheels, the two equations are equal to each other.

Then, rearranging to put like terms on each side yields

1

2

1

2

s
s

r
r
= (Equation 4)

In summary, the ratio of the radius of the turn for each wheel is equal to the ratio of

the distance traveled (arc length) for each wheel. As the outer wheel has a greater radius of

turn, it must also have a larger distance to travel. Additionally, as it must travel a farther

distance in the same amount of time as the inner wheel, it must travel at an increased velocity

in order to do so. The later can be determined from the equation Velocity = Distance / Time.

Since the time to complete the turn is equal for both wheels then it can be determined that the

wheel traveling a farther distance must also be traveling at a greater velocity. In order for two

wheels on the same axle to travel at different velocities, a differential is required.

The LEGO differential shell is used in conjunction with 3 12-tooth (12t) bevel gears

and 2 axles (see Figure 19, below). The differential is driven through either the 24-tooth (24t)

or 16-tooth (16t) gears that are part of the differential shell. When the differential shell turns,

the center 12t bevel gear rotates with the shell. If both of the axles are unloaded (or equally

loaded) then the central 12t gear drives the two outer 12t bevel gears to turn in the same

63

direction, at the same speed. Thus, turning both axles in the same direction, at the same

speed. However, if the movement of one of the axles was stopped (being held, for instance)

then the differential shell would still move but the central 12t gear would spin about the gear

attached to the stopped axle. The motion of the central gear would then drive the remaining

12t gear even faster. Thus, one wheel would rotate differentially with respect to its

counterpart.

Axle

Axle

equal to

where

angular

velocity

since (
Differential
Shell

a) Pre-assembled Differential b) Assembled Differential

Figure 19: LEGO Differential Gear Assembly

12-tooth
bevel gears

Mathematically, the angular velocity (speed and direction) of the differential shell is

 the average angular velocities of the two axles as shown in Equation (4), above.

2
)(2_1_ AxleAxle

shell

ωω
ω

+
= (Equation 5)

ωshell is the angular velocity of the differential shell and ωAxle_1 and ωAxle_2 are the

 velocities of the two axles. Thus, if it is known that each wheel is turning at angular

 x, then it is known that the differential shell is also turning at angular velocity x,

xxx
=

+
2

) . Similarly, if it is known that the differential shell is turning at y, then the

64

average angular velocity of the two axles must also be y. However, the angular velocities of

the individual axles would be unknown. If the differential shell is stationary, it means one of

two things. Either both of the wheels are stationary or both wheels are turning at the same

speed but in opposite directions, as 0
2

))((
=

−+ xx .

While a single differential is useful for radius turns, it is difficult to apply it for

assured straight-line motion. The reason for this is that, if at any time some force acts upon

one axle and not equally upon the other (like dirt on the floor), the motion will be

immediately translated through the differential gears and cause the uninhibited axle to turn

even faster. With one wheel turning fast and another slow, the vehicle will turn from a

straight path. Further, using a single differential forces the added complexity of an additional

axle with a steering mechanism. A more effective approach for some robots is the use of two

motors, each connected to a wheel and each having its own rotation sensor. Then, an error

correction method like Proportional, Integral, and Derivative (PID)9 could be used for error

correction. Since the wheels are independent, they could also be used for turning. However,

there is an easier way to assure straight-line motion and the ability to turn with a single axle –

the dual-differential.

The dual-differential is a gearing of two differentials within the same gear train. One

differential controls linear motion and the other differential controls turning with a separate

motor driving the rotation of each differential. The wheel axles pass through the linear

differential. The differential gears on the turn differential are connected to the wheel axles

9 PID is an error correction method that provides a correction response based upon the amount of current error,
the total amount of error over time, and the change in error.

65

through a series of idler gears10 – an even number on one side, an odd number on the other.

The difference is essential to ensure that when the turn differential is rotated, the motion is

translated to the wheels with equal but opposite angular velocity. A diagram of a dual-

differential configuration is below in Figure 20.

Figure 20: LEGO Dual-Differential

Turn
differential Wheel axle 1

Linear
differential

Wheel axle 2

The benefit that the dual-differential offers is three-fold. First, if one differential shell

is held steady (by braking the motor, for instance) and the other differential is rotated, equal

power is assured to both wheels even if a force acts unequally upon the wheels. Second, both

linear motion and turning can be achieved using the same axle. To avoid the errors and

complications that a steering mechanism causes, a skid plate can be used on the back of the

10 Idler gears are gears that do not modify the velocity/torque of the gear train but serve only to change the
direction of motion.

66

robot. Third, if both differentials are rotated at the same time, then a radial turn can still be

achieved.

When one differential shell is rotated and the other is held steady, equal power to both

wheels is assured because the wheels are physically connected via the gear train that passes

through each differential. For instance, if the linear differential is driven forward and the turn

differential shell is held, then the situation is similar to a single differential. But, the idler

gears would cause the two side 12t bevel gears inside the turn differential to rotate at equal

speeds but in opposite directions. This, in turn, would cause the center 12t bevel gear to spin

at the same speed as the two side bevel gears. With the turn differential held steady, the two

side bevel gears are unable to spin at different speeds because they are both connected to the

same center bevel gear. This ensures that the wheel axles spin at the same speed.

Further, if a portion of the dual-differential system is isolated and just the turn

differential and its two axles are viewed, then according to Equation (5), the angular velocity

of the shell must be 0.11 Why then is it necessary to “hold” this other differential? As

mentioned above, if an outside force acts upon a wheel/axle connected to a differential, then

the differential just transfers more power to the wheel/axle that is free. If the opposite

differential were not held, then this change would cause a difference in the speeds of the two

wheel axles. When the two side bevel gears try to drive the same center bevel gear at

different angular velocities, there is an imbalance. The difference in the angular velocities of

the two side gears is now translated from the center bevel gear to the differential shell,

11 Recall that the idler gears change the direction of motion between one wheel axle and the turn differential.
Thus, the equation changes to be the difference between the angular velocity of two wheel axles, not the sum.

67

causing it to turn. In essence, the central bevel gear rotates at the speed of the fastest side

bevel gear. The center gear then forces the shell to rotate around the slower bevel gear at the

difference of angular velocity between the two side bevel gears. The exact motion of the

wheels would be unknown, the same situation as if it were a single differential. However, by

holding the turn differential shell, the center bevel gear cannot translate the power. This

forces the linear differential to maintain equal power to both wheel axles.

The above holds true for both turning and linear motion. If the linear differential is

rotated and the turn differential shell is held, then the motion translates through the bevel

gears within the turn differential. As explained above, this would provide equal angular

velocity to the wheel axles in the same direction as the linear differential shell is turned.

Similarly, if the linear differential shell is held and the turn differential is rotated, then the

motion from the turn differential is translated through the bevel gears within the linear

differential shell. This situation provides the wheel axles with the same speed, but in opposite

directions. If the direction of rotation of the turn differential shell were reversed, then the two

wheels would also reverse direction. As the wheels are turning at equal speeds but in

opposite directions, the robot turns in place.

By turning both differentials at the same time, a turn with greater than a 0° radius can

be achieved. Above, it was explained that when one differential shell is rotated, equal power

is translated to both wheel axles when the other differential is held steady. For rotational

motion to the linear differential, the wheel axle rotation is in the same direction; for the turn

differential, it is in the opposite direction. Therefore, mathematically, it can be written

68

2

_
2_1_

shelllinear
AxleAxle

ω
ωω == (Equation 6)

when the linear shell is rotated and the turn differential is held. Similarly,

2
_

2_1_
shellturn

AxleAxle

ω
ωω =−= (Equation 7)

when the turn differential is rotated and the linear differential is held. To calculate the effect

on the wheel axles when both differentials are rotated, the above two equations for each

respective wheel axle can be summed as follows:

2

__
1_

shellturnshelllinear
Axle

ωω
ω

+
= (Equation 8)

2

__
2_

shellturnshelllinear
Axle

ωω
ω

−
= (Equation 9)

With the above knowledge, the robot can be coded to rotate each differential

appropriately. How finite of a control there is over the turn will depend largely upon the

amount of motor speed control provided by the programming environment used. What is

required is the desired turn angle, the inside turn radius, the width of the wheelbase (to

calculate the outside turn radius), and the diameter of the wheel. In addition, a rotation sensor

is required to be attached somewhere between each motor and differential gear train.

The goal is to calculate velocity ratios required of each motor to execute the desired

turn. The exact velocity is not required unless there is a specific time in which the turn must

be executed. Since the time to complete the turn for each wheel must be the same, the ratio of

the two arc lengths, s1 and s2, is equal to the ratio of ωAxle_1 and ωAxle_2. Per Equation (4), this

is the ratio of the two turn radii, r1 and r2. Next, take the desired turn angle and a turn radii

69

and calculate the arc length using Equation (3). Since the ratios are all inter-related, only one

arc length needs to be calculated. The next step is to calculate the circumference of each

wheel. The number of wheel rotations required to execute the turn is the arc length divided

by the circumference. The number of rotation sensor ticks per wheel rotations should be

known. Multiply this value by the number of wheel rotations to complete the turn and this

yields the number of ticks upon which the turn has been executed.

70

APPENDIX C

STUDENT ROBOTIC ASSIGNMENTS

71

STUDENT ROBOTIC ASSIGNMENTS

The following pages are copies of student robotic projects assigned as a part of SIUEs

undergraduate Introduction to Artificial Intelligence course, CS 438, in Spring 2003. These

assignments were developed as a part of this thesis project to determine if the results of this

project could be successfully applied to a classroom environment. The goal was to enable

students to develop deliberative robotic architectures using the LEGO RCX and commercial

off-the-shelf LEGO components; thereby enhancing their understanding of the subject

matter.

72

CS 438 – Artificial Intelligence
Interactive C Robotics Assignment 1 (RA1)

This assignment is designed to give you some experience with the Interactive C programming
environment and building your own robot. You will build and program a robot that follows a
wavering black line across a mat from a start to a finish point. Your robot should successfully manage
the line in the most time efficient manner possible.

Items to Note:

• Your robot must fit and start completely within the start box on the mat.
• A part of the path has been taped because white lettering appears underneath. In the past, this

has caused some robots to miss the line. As such, your light sensors need to be far enough up
off of the mat as to avoid hitting the tape edges. Should anyone encounter trouble because of
the tape, please inform Gary.

• The robots will be tested in EB 2029. The lights will be dimmed slightly to reduce glare off
of the glossy mat. However, it is recommended that you program your robot to calibrate its
light sensor beforehand and adjust threshold values accordingly. A marker will be placed on
the room dimmer to indicate the light setting that will be used during the trials.

• The loop may be taken either direction – clockwise or counterclockwise.
• Your robot need not do anything special (stop, beep, whatever) once it enters the finish zone,

as it will be difficult to tell the zone edges from a line that it was following.
• The mat will be available for use in EB 2029 for testing purposes. Do not remove it from

EB 2029.

This assignment is due Wednesday, 02 April 2003 at 1:29PM and is worth 100 points. Any late
submissions will receive a late penalty and be ineligible for bonus points. Turn in a hardcopy of
your program (the *.ic file(s)) at class time on the due date. Name your program RA1-[each
teammate’s initials].ic and place it in the dropbox under Assignment 6. If your code spans multiple
files, either zip them or place them all into one text file with the start and end of each individual file
clearly marked. The assignment only needs to be submitted once by a single teammate. Be sure to
place ALL teammate names in the comment blocks at the start of the program to ensure proper credit
is received.

Each team will be given a single trial to complete the line following course. The robot must be
programmed with a 1 second delay after pressing the Run button. This will ensure that the robot is
not accidentally thrown off course by moving while someone’s hand is in the way. If the robot does
not complete the course the first time, the team may elect to make a second attempt with a 5-point
penalty. Only one additional attempt is allowed.

Robots that follow the path around and successfully complete it will receive a base score of 80 points.
If the loop is successfully traversed, an additional 10 points will be given. The additional 10 points
will be awarded based upon how well the robot is constructed and the logic in your robot’s program.

The robot demonstrations / competition will occur in EB 2029 during the last half of class time on 02
April.

73

Bonus: A record will be kept of the time that it takes every robot to successfully complete the line
following course. A bonus of 10 points each member will be given to the team whose robot has the
best time score and can successfully navigate the loop. A bonus of 5 points each team member will
be given for the fastest robot that was unable to navigate the loop BUT was able to complete the path
in less time than the second fastest robot that did take the loop.

Please contact Gary Mayer, gmayer@siue.edu, with any questions regarding Interactive C or robot
construction.

mailto:gmayer@siue.edu

74

CS 438 – Artificial Intelligence
Interactive C Robotics Assignment 2 (RA2)

This assignment is designed to give you experience with a reactive robotic architecture. You will
build and program a robot that emulates a scavenging animal. The robot will explore an area looking
for “food” and avoiding obstacles (such as a wall). Your robot should successfully find the “food” in
the most time efficient manner possible using a reactive robotic architecture.

Items to Note:

• The arena is a 40” x 60” space with a white background. You can think of this as a 4 x 6 grid
of squares, each with 10” sides.

• Your robot must fit entirely within a single grid square. To do so, it must be no larger than 8”
wide and deep. The grid space may be occupied by tape along their borders, making them
less than the original 10” dimension.

• Black tape will be used to emulate obstacles and green tape will emulate food. The tape will
be placed on the surface of the grid. (i.e. A light sensor needs to point downward.)

• Tape obstacles / food will outline a 10” x 10” square (one grid space).
• Physical obstacles may also be placed in the arena. (i.e. You need a bumper. If you run out

of sensor ports, see the lecture notes on muxing touch sensors with a light sensor.) It will
most likely not occupy an entire square.

• The robot may not cross a black line. It is understandable if a small portion of the robot
crosses over but the robot as a whole must react to go around the black line as soon as it sees
it.

• If the robot senses food, it should beep three times and stop. Only a single grid space will
contain food.

• The arena will be available for use in EB 2029 for testing purposes. Please do not remove it
from EB 2029. Tape will also be made available for you to test your robot with different
obstacle / food configurations.

• The same (or nearly the same) environment will be used for the next assignment. The
difference is that your robot will plan its trip. If you wish, you can try to build a robot model
that will accomplish both the reactive and deliberative tasks. If you wish to do this, then
build the model such that it is capable of traveling a straight line. (I’d suggest using a
differential or two). You will also need to use the rotation sensors to determine the distance
traveled from grid to grid for the next assignment. If you don’t use the rotation sensors for
this assignment then you can either incorporate them into the design and leave them unused
or try to leave room for their addition later.

Each team will be given a single trial to complete the course. The robot should be programmed with
a 1 second delay after pressing the Run button. This will ensure that the robot is not accidentally
thrown off course by moving while someone’s hand is in the way. Optimally, the robot should find
the food within 5 minutes, but no more than 20 minutes.

75

Robots must use a reactive architecture (direct Sense → Act) to complete the assignment. Specific
locations for the start position, start direction, obstacles, and food will be established on the day of the
demonstrations. All teams will demonstrate using the same layout. You will not be allowed to test
against this layout. Remember, a reactive architecture’s strength is handling the Open World
assumption.

This assignment is due Wednesday, 16 April 2003 at 1:29PM and is worth 100 points. Any late
submissions will receive a late penalty. Turn in a hardcopy of your program (the *.ic file(s)) at
class time on the due date. Name your program RA2-[each teammate’s initials].ic and place it in the
dropbox under Assignment 7. If your code spans multiple files, either zip them or place them all
into one text file with the start and end of each individual file clearly marked. The assignment only
needs to be submitted once by a single teammate. Be sure to place ALL teammate names in the
comment blocks at the start of the program to ensure proper credit is received.

Grading:

Logic and Coding 40 pts
Robot Physical Construction 25 pts
Overall Design (Integration) 10 pts

Finds food 25 pts
Total: 100 pts

The robot demonstrations will occur Thursday, 17 April, and Friday, 18 April. A sign-up sheet
will be made available with specific times on these dates. To ensure fairness to those testing earlier,
teams will be required to leave their robots when they turn in the assignment and/or upload the code
from the dropbox before testing (instructor’s option).

Please contact Gary Mayer, gmayer@siue.edu, with any questions regarding Interactive C or robot
construction.

Obst

Obst Food

Obst

Obst
<Start>

Figure 1 – Example of an Arena Layout

mailto:gmayer@siue.edu

76

CS 438 – Artificial Intelligence
Interactive C Robotics Assignment 3 (RA3)

This assignment is designed to give you experience with a deliberative robotic architecture. You will
build and program a robot that plans a route to a goal (or goals) and avoids known obstacles. Your
robot should successfully find the goal in the most time efficient manner possible using a deliberative
robotic architecture.

Items to Note:

• The arena is a 40” x 60” space with a white background. You can think of this as a 4 x 6 grid
of squares, each with 10” sides.

• Your robot must fit entirely within a single grid square.
• Black tape will be used to emulate obstacles and green tape will emulate the goal. The tape

will be placed on the surface of the grid. (i.e. A light sensor needs to point downward.)
• Tape obstacles / goal will outline a 10” x 10” square (one grid space).
• Physical obstacles may also be placed in the arena. (i.e. You need a bumper. If you run out

of sensor ports, see the lecture notes on muxing touch sensors with a light sensor.) It will
most likely not occupy an entire square.

• If the robot senses a goal, it should beep three times and stop. More than one grid space may
contain a goal.

• The robot may pass through a grid containing a goal.
• The robot may not pass through a grid containing an obstacle. It is understandable if a small

portion of the robot crosses over the line to properly sense it, but the robot as a whole must go
around the grid space.

• The arena will be available for use in EB 2029 for testing purposes. Please do not remove it
from EB 2029. Tape will also be made available for you to test your robot with different
obstacle / goal configurations.

• To make the plan and execute it efficiently, your robot must know where it is within the
arena. This can be accomplished through use of ded reckoning with the rotation sensors
(counting how many “ticks” to the next grid space). However, this process can be severely
hampered by immeasurable errors such as drift. To minimize these errors, you need to build
your robot such that it can consistently travel a straight line and turn ninety degrees.

• As it is rather difficult to build a robot that will travel perfectly straight and turn a consistent
ninety degrees all of the time, you may, at the instructor’s discretion, nudge to robot back on
course. This will only be allowed twice during the entire run. Do not mistake this as an
opportunity for sloppiness. If it does not appear that your team put considerable effort into
attempting to make it move straight and turn ninety degrees, points will e deducted.

Each team will be given a single trial to complete the course. The robot should be programmed with
a 1 second delay after pressing the Run button. This will ensure that the robot is not accidentally
thrown off course by moving while someone’s hand is in the way. The robot must reach the original
goal within 10 minutes – including planning, any required re-plans due to plan failure, and actual
movement.

77

Robots must use a deliberative architecture (Sense → Plan → Act) to complete the assignment.
Specific locations for the start position, start direction, obstacles, and goal will be established on the
day of the demonstrations. Your robot must be capable of having these locations manually entered at
run-time. All teams will demonstrate using the same layout. You will not be allowed to test against
this layout. Your robot must be capable of handling plan failure (a new goal or obstacle is found).

If a new goal is found, the robot must audibly signal that it recognizes the new goal. Then, it may
proceed on its existing path to the original goal. If a new obstacle is found, the robot must stop and
plan a new path from it’s current location to the goal – around the new-found obstacle. Be sure to
account for the robot being off-center of a grid space if this is important to the localization problem.

This assignment is due Wednesday, 30 April 2003 at 1:29PM and is worth 100 points.
Any late submissions will receive a late penalty. Turn in a hardcopy of your program (the
*.ic file(s)) at class time on the due date. Name your program RA3-[each teammate’s
initials].ic and place it in the dropbox under Assignment 8. If your code spans multiple
files, either zip them or place them all into one text file with the start and end of each
individual file clearly marked. The assignment only needs to be submitted once by a single
teammate. Be sure to place ALL teammate names in the comment blocks at the start of the
program to ensure proper credit is received.

Grading:

Logic and Coding 40 pts
Robot Physical Construction 25 pts
Overall Design (Integration) 10 pts

Finds goal 25 pts
Total: 100 pts

78

APPENDIX D

SUMMARY OF STUDENT FEEDBACK FORMS

79

SUMMARY OF STUDENT FEEDBACK FORMS

The following pages are copies of the Robotics Instruction Questionnaire that was

distributed to the students after the robotics lectures were completed. From the 23 students

taking the course, 19 responses were received. Within each question space, the average

response score, median response score, and a summary of relevant comments are included.

Notes regarding the student feedback are also included.

The overall feedback was very positive. Students were asked to provide responses on

a scale of 1 to 5. One represented Strongly Disagree and 5 represented strongly agree, with 5

being the preferred response. The median of the response scores for all questions, except one,

was 4.0. The one question was attempting to ask if having a hybrid robotic assignment would

help with understand hybrid robotic architectures. Most students interpreted this as adding

another lab into the whole robotic instruction versus looking at it from a strictly “would it

beneficial to have a lab versus just lecture” point of view and marked it very negatively. The

average for all scores, except for the same hybrid robotic control question, did not fall below

3.42. So, while both positive and negative comments were received for many responses, the

overall indication from the class as a whole indicates a positive experience.

The major item drawn from the responses is that the amount of time spent building

robots should be reduced. While construction may provide the students experience with the

flaws of the mechanical world, too much (especially repetitively) drew away from the core

lessons concerning the robotic paradigms and frustrated the students. A hybrid robotic

control project, combining aspects of reactive and deliberative robotic paradigms and

requiring only one robot to be built, may be the best solution. Further, a simple project

80

should remain as the first assignment to allow the students to gain familiarity with the

hardware and programming environment.

Additional responses received indicate that some students thought that the course was

too hardware-focused. The intent was to provide an overall view of robotics, which includes

how hardware and software interface and the role that hardware (both the physical design and

the sensors) can play when the robot interacts with the real world. It’s this interaction with

the real world that generates so many anomalies and errors that the programmer should be

ready to compensate for as best as possible within the software. While less than 20% of the

responses stated such an opinion, the fact that such comments were made may indicate that

more emphasis needs to be placed on why understanding the hardware is important for

robotics – whether designing the hardware or software.

81

CS 438 – Artificial Intelligence
Robotics Instruction Quesionnaire

This questionnaire is not an official SIUE class survey. However, it would be greatly
appreciated if you would take the time to complete it. This survey’s purpose is three-fold:

1) Help the instructor determine your evaluation of the Teaching Assistant’s (TAs)
performance in teaching you about robotics. Similarly, it will help the TA improve
his teaching skills for the future.

2) Evaluate the usefulness of the information the TA has gathered while completing his
thesis.

3) Provide feedback to the CS department chair to enable better integration between CS
438 and robotics courses that may be taught in the future.

For each question, please circle a number corresponding to your response to the statement.

1 – Strongly Disagree 2 – Disagree 3 – Undecided 4 – Agree 5 – Strongly Agree

Please include any comments in the space below each statement and / or on the back. If on
the back, please reference the comment number. Please keep in mind that this questionnaire
refers only to the robotics portion of the course.

1. The presentation material and in-class examples were appropriate and
helped me better understand robotics.

1 2 3 4 5

Comments:
- A bit too much mechanics.

2. I required additional help from the TA outside of class. (Y or N) If Yes,
the additional help provided by the TA was of value.

1 2 3 4 5

Comments:

3. This course provided an appropriate amount of material on robotics. 1 2 3 4 5
Comments:

- Way too much robotics. More interested in other AI topics.
- Should be more robotics.
- Good general overall view of mechanical and programming aspects.
- Make last assignment easier for end of semester.

4. Lab assignments are the best approach to determining a student’s
understanding of robotics. (Vice methods like quizzes, homework, or papers.)

1 2 3 4 5

Comments:
- Assignments were a bit too much for time allotted.
- Showed how to implement concepts; not just memorize them.
- Learned a great deal and had fun doing it.
- Had difficulty with the mechanics and building. Robots are finicky.

Avg: 4.0; Med: 4.0

Avg: 3.67; Med: 4.0

Avg: 3.78; Med: 4.0

Avg: 3.89; Med: 4.0

82

5. Overall, The robotics labs assigned complimented the lectures and furthered
my understanding of robotics. Specifically, …

1 2 3 4 5

5.a. Having a small project as the first assignment was very beneficial in
allowing me to learn the software and experiment with the hardware prior to
the next assignments.

1 2 3 4 5

5.b. The reactive robotic control assignment gave me a clear understanding of
a reactive system’s benefits and drawbacks.

1 2 3 4 5

5.c. The reactive robotic assignment was well worth doing.

1 2 3 4 5

5.d. The deliberative robotic control assignment gave me a clear
understanding of a deliberative system’s benefits and drawbacks.

1 2 3 4 5

5.e. The deliberative robotic control assignment was well worth doing.

1 2 3 4 5

5.f. From the last two assignments, I can clearly understand how a mixture of
the two approaches would best serve most robotic platforms.

1 2 3 4 5

5.g. I do not feel an additional assignment is necessary to understand the
benefits of a hybrid robot control architecture.

1 2 3 4 5

Comments:
- While most responded that there are too many assignments; the original intent was not to ask if an assignment should

be added, but if (regardless of time) one would be beneficial to understanding the material.
- This much depth should only be used in an all-robotics course.
- Computing power is so low and sensor error so bad that it detracts from designing good logic.

6. The requirements for each lab assignment were clearly understood from the
assignment sheet and explanation given in the classroom.

1 2 3 4 5

Comments:
- Grading / points assignment needs revision.

7. The size of each team was appropriate and enabled me to participate hands-
on in each lab assignment.

1 2 3 4 5

Comments:
- Pairs are probably the best for programming teams when code can’t be split.
- Teams are an unfair way to evaluate individuals.
- Teammate never participated / was uncompromising.

8. The software used to code the robot was appropriate for the assignments
given and the hardware available.

1 2 3 4 5

Comments:
- No debug function. [Note: latest version includes a “code check function”]
- Extremely glad we used a C environment

Avg: 4.16; Med: 4.0

Avg: 4.42; Med: 4.0

Avg: 4.21; Med: 4.0

Avg: 3.74; Med: 4.0

Avg: 3.79; Med: 4.0

Avg: 4.16; Med: 4.0

Avg: 4.16; Med: 4.0

Avg: 2.42; Med: 3.0

Avg: 3.79; Med: 4.0

Avg: 4.0; Med: 4.0

Avg: 3.63; Med: 4.0

83

9. Having to build the robot gave me a better understanding of the importance
hardware plays in robotic performance.

1 2 3 4 5

Comments:
- Allowed more creativity.
- Hardware played too much of a role. If hardware was messed up, robot couldn’t complete task regardless of code.

10. Having to build the robot provided a better understanding of sensor
limitations.

1 2 3 4 5

Comments:
- Greatly.
- Had to calibrate sensor values.
- Learned difficulty of [using] sensors.

11. Having to build the robot was worthwhile in understanding overall robot
design, including hardware-to-software integration.

1 2 3 4 5

Comments:
- Learning about dual-differential seemed a bit much; though interesting.
- Hands-on experience good source of knowledge.

12. Overall, the robotics labs were at the appropriate difficulty level for the
course.

1 2 3 4 5

Comments:
- Too [strict] in grading.
- Hardware too difficult.
- Robotic assignments easier than first half of course.
- Building robots took most of the time.
- Too many aspects to the assignments to be done within allotted time.

13. If an additional assignment is given requiring a robot to deliver mail to offices and travel in
a model university (complete with a random placement of people), I would suggest the following
robotic architecture: (Circle one and please explain in the comments section below).

 REACTIVE HYBRID DELIBERATIVE
Comments:
[Note: The intent of this question was to examine the students’ understanding of the different robotic paradigms. The majority of
the students answered the question correctly.]

14. I was interested in robotics prior to taking this course.

1 2 3 4 5

15. This course enhanced my interest in robotics and I would like to learn
more.

1 2 3 4 5

Comments:
- I enjoyed the robot portion.
- I can only take a class in robotics if I have a lot of time.

16. Overall, I was very pleased with the robotics section of this course.

1 2 3 4 5

Avg: 4.32; Med: 4.0

Avg: 4.11; Med: 4.0

Avg: 4.16; Med: 4.0

Avg: 3.68; Med: 4.0

Avg: 3.55; Med: 3.50

Avg: 3.42; Med: 4.0

Avg: 3.89; Med: 4.0

84

APPENDIX E

HARDWARE BUILDING INSTRUCTIONS

85

HARDWARE BUILDING INSTRUCTIONS

This is a detailed, visual description of how to build the robots used in this project.
Given the reliance of the architecture on the dual-differential for accurate localization, it is
the core of the overall design. The robot is built around the gear train and seeks to minimize
immeasurable errors caused by an imbalanced design. Fittingly, the construction begins with
the dual-differential. The next layer contains the gears between the motor and the differential.
The third gear layer adds the motors and rotation sensors. Throughout, the remaining steps
encapsulate the gear train and define a balanced support structure for the motors and RCX.

The diagrams were created in MLCAD version 3.0; created by Michael Lachmann.

The software is free for download and may be found at http://www.lm-software.com/mlcad/.

During building, it may be true that a different piece may more efficiently substitute

for one or two within the model. However, when the model was created, an attempt was
made to use only a single set of pieces from the currently available, off-the-shelf LEGO
Mindstorms sets.

To begin, Table 2, below, lists the parts required for construction. It was

automatically generated by MLCAD. LEGO parts are used throughout a variety of different
sets for different purposes. As such, the MLCAD descriptions may not be intuitive. However,
the descriptions are typically useful enough to accurately identify a part and they do conform
to LEGO nomenclature. For those unfamiliar with it, LEGO nomenclature uses the term
“brick” to identify a block-type piece that is equal in height to 3 stacked “plates.” The
number of studs on a part is then used to identify that part. For example, a “Brick 2 x 4”
refers to a brick with 2 rows of studs and 4 columns – a total of 6 studs. Typically, the
difference between a technic brick or plate and a normal brick or plate is the technic version
has holes through the sides or top. When a number is given for an axle, that number refers to
the axle’s length. So, a “Technic Axle 5” refers to an axle that is 5 studs long. On wheels, the
numbers refer to millimeter diameters. Some of the wheels have this dimension stamped onto
them. On angle connectors, the number is stamped onto the connector. The drawings that
follow use the MLCAD descriptions for labels. In addition, other common abbreviations are
used. For instance, gears are often abbreviated by using the number of gears followed by a
“t” for teeth. Thus, a “24t” gear refers to a 24-tooth gear.

Table 3, below, provides step-by-step building instructions. Each step lists the parts

required for the step on the right and provides a visual image of how the parts are assembled.
While color does not usually matter, there are exceptions. For instance, technic pins. Technic
pins are light-grey and are meant to freely rotate when inserted into brick holes. Frictions
pins look just like technic pins but they are black. They are intended to hold pieces tightly
together and, therefore, do not turn easily in the holes. Technic rubber bands are another
example. Each color represents a different length and thickness.

86

Table 2: LEGO Hardware Parts List

Quantity Color
MLCAD

Part Number MLCAD Description
 2 Black 6048.DAT Arm Piece with Pin and 2 Fingers

1 Black 2654.DAT Boat 2 x 2 Stud
5 Black 3004.DAT Brick 1 x 2
1 Yellow 3004.DAT Brick 1 x 2
3 Black 3003.DAT Brick 2 x 2
3 Black 3001.DAT Brick 2 x 4
1 Blue 2982C01.DAT Electric Light Sensor (Complete Assembly Shortcut)
1 Light-Gray 884.DAT Electric Mindstorms RCX (Complete Assembly

Shortcut)
2 Black 4755.DAT Electric Plate 1 x 2 with Contacts

(Note: robot requires 4 connector wires)
2 Blue 2977C01.DAT Electric Rotation Sensor (Complete Assembly

Shortcut)
2 Light-Gray 2983.DAT Electric Technic Micromotor Pulley
3 Light-Gray 71427C01.DAT Electric Technic Mini-Motor 9V
1 Light-Gray 879.DAT Electric Touch Sensor Brick 3 x 2 (Complete

Assembly Shortcut)
4 Black 4221.DAT Grab Jaw
2 Yellow 4220.DAT Grab Jaw Holder

13 Light-Gray 3023.DAT Plate 1 x 2
4 Light-Gray 32028.DAT Plate 1 x 2 with Door Rail (Technic motor holder)
1 Yellow 3623.DAT Plate 1 x 3
2 Light-Gray 3710.DAT Plate 1 x 4
2 Light-Gray 3666.DAT Plate 1 x 6
3 Light-Gray 3460.DAT Plate 1 x 8
2 Light-Gray 4477.DAT Plate 1 x 10

 1 Blue 3022.DAT Plate 2 x 2
 3 Light-Gray 3022.DAT Plate 2 x 2

4 Light-Gray 2420.DAT Plate 2 x 2 Corner
4 Light-Gray 2817.DAT Plate 2 x 2 with Holes

 1 Light-Gray 3020.DAT Plate 2 x 4
 4 Yellow 3020.DAT Plate 2 x 4

2 Light-Gray 3832.DAT Plate 2 x 10
1 Light-Gray 3033.DAT Plate 6 x 10
3 Black 3747.DAT Slope Brick 33 3 x 2 Inverted
2 Black 3665.DAT Slope Brick 45 2 x 1 Inverted
2 Yellow 3665.DAT Slope Brick 45 2 x 1 Inverted
1 Black 3660.DAT Slope Brick 45 2 x 2 Inverted
2 Light-Gray 32015.DAT Technic Angle Connector #5
2 Black 3705.DAT Technic Axle 4

87

5 Black 32073.DAT Technic Axle 5
1 Black 3706.DAT Technic Axle 6
9 Black 3707.DAT Technic Axle 8
2 Black 3737.DAT Technic Axle 10
2 Black 3708.DAT Technic Axle 12
2 Light-Gray 6538.DAT Technic Axle Joiner
4 Light-Gray 3749.DAT Technic Axle Pin
2 Green 32064.DAT Technic Brick 1 x 2 with Axlehole
9 Black 3700.DAT Technic Brick 1 x 2 with Hole
4 Yellow 3700.DAT Technic Brick 1 x 2 with Hole
8 Black 3701.DAT Technic Brick 1 x 4 with Holes
2 Green 3701.DAT Technic Brick 1 x 4 with Holes
3 Black 3894.DAT Technic Brick 1 x 6 with Holes
2 Black 3702.DAT Technic Brick 1 x 8 with Holes
2 Black 3895.DAT Technic Brick 1 x 12 with Holes
4 Black 3703.DAT Technic Brick 1 x 16 with Holes

27 Light-Gray 3713.DAT Technic Bush
9 Light-Gray 4265C.DAT Technic Bush 1/2 Smooth
1 Light-Blue 32137.DAT Technic Connector Block 3 x 2 x 2
2 Light-Gray 32039.DAT Technic Connector with Axlehole
2 Dark-Gray 6573.DAT Technic Differential New
2 Yellow 75.DAT Technic Flex-System Hose
4 Light-Gray 3647.DAT Technic Gear 8 Tooth
6 Light-Gray 6589.DAT Technic Gear 12 Tooth Bevel
4 Light-Gray 4019.DAT Technic Gear 16 Tooth
7 Light-Gray 3648.DAT Technic Gear 24 Tooth
3 Light-Gray 6632.DAT Technic Liftarm 1 x 3
2 Light-Gray 2825.DAT Technic Liftarm 1 x 4
2 Black 6629.DAT Technic Liftarm 1 x 9 Bent
2 Light-Gray 3673.DAT Technic Pin
1 Yellow 32136.DAT Technic Pin 3L Double
1 Dark-Gray 4274.DAT Technic Pin 1/2
3 Black 6558.DAT Technic Pin Long with Friction
7 Black 4459.DAT Technic Pin with Friction
2 Light-Gray 3738.DAT Technic Plate 2 x 8 with Holes
2 Light-Gray 6553.DAT Technic Pole Reverser Handle

 1 Blue [created] Technic Rubber Band
2 White [created] Technic Rubber Band

 1 Yellow [created] Technic Rubber Band
 1 Light-Gray 4185.DAT Technic Wedge Belt Wheel
 2 Black 6578.DAT Tire 30.4 x 14 VR
 2 White 2994.DAT Wheel 30.4 x 14 VR

88

Table 3: Hardware Building Instructions

Step Model Parts Required / Instructions

1

½ bushing

Dual-Differential:
1 - Technic Axle 5
1 - Technic Bush ½ Smooth
1 - Technic Gear 24 Tooth
1 - Technic Brick 1 x 16 with Holes

Slide a ½ bushing about 1 ½ bushing’s
width down a 5-axle. Place a 24t gear
on the other end and insert the axle
into the 6th hole (from the left) of the 1
x 16 technic brick.

2a

12t bevel gear

1 - Technic Differential New
3 - Technic Gear 12 Tooth Bevel
2 - Technic Axle 8

Place a 12t bevel gear onto the small
axle within the differential.

2b

Holding a second 12t bevel gear
within the differential, slide an axle
through the 2nd gear’s hole.

2c

Repeat for the other side of the
differential.

89

3

1 – Technic Gear 24 Tooth

Note that the differential shell has two
gears built onto the shell, a 24t gear
and a 16t gear. Slide a 24t gear onto
the axle closest to the 16t gear. Then,
slide this axle into the 1 x 16 brick, to
the right of the existing 24t gear, so
that the teeth of the two 24t gears
mesh.

4

Turn Differential:
1 - Technic Differential New
3 - Technic Gear 12 Tooth Bevel
2 - Technic Axle 8
1 - Technic Gear 24 Tooth

Build a second differential using steps
2 a-c above. Then, slide a 24t gear
onto the axle closest to the 24t gear on
the differential shell. Finally, insert
this axle into the 1 x 16 brick, to the
left of the first 24t gear, so that the
gear teeth mesh.

5

 Axle Pin

4 – Technic Gear 16 Tooth
2 – Technic Axle Pin

Slide a 16t gear onto each differential
axle. Then insert an axle pin into the 2
remaining 16t gears.

90

6

1 - Technic Brick 1 x 16 with Holes

Slide a second 1 x 16 technic brick
onto the two differential axles. Ensure
that the holes align with the first 1 x
16 technic brick. As the 1 x 16 technic
brick nears the differentials, snap the
two 16t gears with axle pins into
place, being sure that the teeth of the
four 16t gears mesh with their
neighbor’s when the axle is fully
inserted.

7

Wheels and Support Frame:
2 - Technic Brick 1 x 16 with Holes

Place two 1 x 16 technic bricks onto
the assembly as shown.

8

Friction Pin - Long

1 - Technic Bush ½ Smooth
1 – Technic Pin Long with Friction

Slide the ½ bushing onto the linear
(right) differential as shown. Then,
insert a long friction pin in the hole
that is between the two center 16t
gears. Note that the friction pin has
one side with a single groove and the
other has two. If you insert the side
with two groves toward the 1 x 16
brick, only push the pin in far enough
so it clicks into the first groove.

91

9

Plate 2 x 2 with holes

1 – Plate 2 x 2 with Holes
1 – Tire 30.4 x 14 VR
1 – Wheel 30.4 x 14 VR

Place the tire onto the wheel. Then,
insert the wheel assembly onto the
linear differential axle.

Next, slide a 2 x 2 plate, stud side up,
onto the long friction pin. Ensure the
plate only goes as far as the first
groove on the pin.

10

 Bushing

1 – Technic Bush

Slide a full bushing onto the linear
differential axle.

11

 Friction Pin

1 – Technic Pin with Friction
1 – Technic Bush ½ Smooth

Insert a friction pin into the other hole
on the 2 x 2 plate.

Slide a ½ bushing onto the linear
differential axle.

12

1 – Technic Brick 1 x 12 with Holes

Slide the 1 x 12 technic brick over the
axles and lock into place using the
friction pin and the bottom of the two
1 x 16 technic bricks.

92

13

1 – Technic Bush
1 – Technic Bush ½ Smooth

Rotate the model to work on the other
axles.

Slide a ½ bushing onto the linear
differential axle (now on the left).

Slide a full bushing onto the axle that
passes through the central 24t gear.

14

1 – Plate 2 x 2 with Holes
1 – Tire 30.4 x 14 VR
1 – Wheel 30.4 x 14 VR

Place the tire onto the wheel. Then,
insert the wheel assembly onto the
linear differential axle.

Next, slide a 2 x 2 plate onto the
center axle.

15

1 – Technic Bush

Place a technic bushing onto the axle
with the wheel.

16

1 – Technic Bush ½ Smooth
1 – Technic Pin with Friction

Slide a ½ bushing over the wheel axle
and insert a friction pin into the hole
in the 2 x 2 plate.

17

1 – Technic Brick 1 x 12 with Holes

Slide the 1 x 12 brick over the axles as
shown. Secure it in place with the
friction pin and the ends of the 1 x 16
bricks.

93

18

Rear Support:
2 – Technic Brick 1 x 2 with Hole
1 – Technic Brick 1 x 2 with Axlehole

Place the three bricks in the positions
shown. The holes in the three bricks
should line up with the last hole in the
1 x 12 brick.

19

1 – Technic Axle 5

Slide the axle into the hole to secure
the pieces. It should pass fully
through the 1 x 12 brick, the three 1 x
2 bricks, and the main 1 x 16 brick.

20

2 – Technic Brick 1 x 2 with Hole
1 – Technic Brick 1 x 2 with Axlehole
1 – Technic Axle 5

Repeat Steps 18 and 19 to complete
the rear support assembly on the other
side.

21

1 – Technic Pin with Friction

Insert the friction pin into the center
hole of the rear 1 x 16 brick.

22

1 – Technic Brick 1 x 2 with Hole
1 – Brick 2 x 2

Place the 1 x 2 brick onto the friction
pin. Connect the 2 x 2 brick to the 1 x
2 brick and the rear 1 x 16 brick, as
shown.

23

Boat 2 x 2 Stud

1 – Plate 2 x 10
1 – Plate 2 x 2
1 – Boat 2 x 2 Stud

Center the 2 x 10 plate on the 2 x 2
brick and connect. The plate should
connect with 1 pin into each 1 x 16
brick and the first 1 x 2 brick.

Next, place the 2 x 2 plate onto the 2 x
10 plate, directly underneath the 2 x 2
brick. Finally, place the 2 x 2 boat
stud onto the 2 x 2 plate.

94

24

Front Support and Kneeling Skids:
2 – Technic Pin with Friction

Rotate the model around to the front.
Insert 2 friction pins into the forward
1 x 16 brick as shown

25

1 – Technic Brick 1 x 6 with Holes

Slide the 1 x 6 technic brick onto the
two friction pins. The brick should be
centered between the two 1 x 16
technic bricks.

26

1 – Technic Brick 1 x 6 with Holes
1 – Plate 1 x 8
1 – Technic Pin ½

Place the 1 x 6 technic brick between
the two 1 x 16 technic bricks and
attach it to the bottom of the 1 x 6
technic brick added in Step 25. Secure
the assembly using the 1 x 8 plate to
connect the 1 x 6 technic brick and 1 x
16 technic bricks.

Finally, insert the long end of the ½
pin into the center hole of the bottom
1 x 6 technic brick.

27

1 – Technic Pin with Friction

Insert a friction pin into the 1st hole of
the 1 x 16 technic brick (supporting
the axles).

28

1 – Technic Brick 1 x 2 with Hole
1 – Plate 2 x 2 with Holes

Place the 1 x 2 brick, stud-side up,
onto the friction pin. Secure the pieces
with the 2 x 2 plate.

95

29

1 – Technic Pin with Friction
1 – Technic Brick 1 x 2 with Hole
1 – Plate 2 x 2 with Holes

Repeat Steps 27 and 28 for the front
of the other 1 x 16 technic brick.

30

Motor and Gear Support:
3 – Technic Brick 1 x 4 with Holes

Place the three 1 x 6 technic bricks
along the top of the 1 x 16 technic
brick as shown.

31

1 – Brick 2 x 4

Place the 2 x 4 brick on top of the 2 x
2 plate so that it joins the plate and the
1 x 16 technic brick. Be sure that the 2
x 2 plate is studs-side up.

32

2 – Brick 1 x 2

Place one 1 x 2 brick on top of the 2 x
4 brick as shown. Place the other
along side the rear 1 x 16 technic
brick.

33

1 – Plate 1 x 8
1 – Plate 2 x 4

Place the 1 x 8 plate on top of the 1 x
16 technic brick so that 2 studs
overhang from the front.

Place the 2 x 4 plate along the back as
shown.

96

34

3 – Technic Brick 1 x 4 with Holes
1 – Brick 2 x 4
2 – Brick 1 x 2

Rotate the model to the other side and
insert the three 1 x 4 bricks similar to
Step 30. Attach the 2 x 4 brick and the
two 1 x 2 bricks similar to Steps 31
and 32. However, note that the 1 x 2
brick on top of the 2 x 4 brick goes
closer to the wheel on this side.

35

1 – Plate 1 x 8
1 – Plate 2 x 4

Repeat the placements of the 1 x 8
plate and the 2 x 4 plate for this side
similar to Step 33.

36

2 – Slope Brick 45 2 x 1 Inverted

Place the two inverted slope bricks
onto the overhanging edges of the 1 x
8 plates attached in Steps 33 and 35.

37

Main Gear Train Assembly:
1 – Technic Brick 1 x 8 with Holes
1 – Technic Pin Long with Friction

Place the short end of the long friction
pin into the 2nd hole of the 1 x 8
technic brick, as shown.

38

2 – Technic Brick 1 x 4 with Holes

Slide the center holes of the two 1 x 4
technic bricks onto the friction pin.

39

4 – Technic Axle 8

Place an axle into every other hole, as
shown. The ends of the axles should
pass through and be flush with the 1 x
8 technic brick.

97

40

2 – Technic Bush

Place a bushing onto the two longer
pieces of axle.

41

1 – Technic Gear 24 Tooth
1 – Technic Gear 8 Tooth

Slide the 24t gear onto the outermost ,
longer axle. Slide the 8t gear onto the
axle next to it. Be sure that gear teeth
mesh properly.

42

3 – Technic Bush
1 – Technic Gear 24 Tooth

Place the 24t gear onto the axle with
the 8t gear. Slide bushings onto the
other 3 axles. Be sure that the
bushings do not interfere with the 24t
gear’s rotation.

43

3 – Technic Bush
1 – Technic Gear 24 Tooth

Place the 24t gear onto the axle to the
left of the last 24t gear. Slide bushings
onto the other 3 axles. Be sure that the
bushings do not interfere with the 24t
gear’s rotation.

44

1 – Technic Gear 24 Tooth
1 – Technic Gear 8 Tooth
1 – Technic Brick 1 x 4 with Holes

Place the 24t gear onto the last axle
containing no gears. Place the 8t gear
onto the axle next to it, being sure that
the gears mesh properly.

Slide the 1 x 4 technic brick onto the
last two axles.

98

45

1 – Technic Brick 1 x 4 with Holes
1 – Technic Pin Long with Friction
2 – Technic Bush

Slide the 1 x 4 technic brick onto the
right-most axles and secure the two 1
x 4 bricks with the long end of the
long friction pin.

Place a bushings onto each of the
other axles, in front of the 24t and 8t
gears.

46

1 – Technic Brick 1 x 8 with Holes

Complete the main gear train
assembly by sliding the 1 x 8 technic
brick onto the axles, locking it into
place with the long friction pin.

47a

Insert the completed gear train
assembly onto the frame.

47b

When properly inserted, the 1 x 8
technic bricks will rest along the 1 x
16 technic brick that support the axles,
between the 1 x 8 and 2 x 4 plates
placed in Steps 33 and 35. This will
align the two outermost 24t gears to
mesh with the 16t gears on the two
differentials.

48

Motor / Rotation Sensor Assembly:
1 – Electric Technic Mini-Motor 9V
1 – Technic Axle Joiner
1 – Technic Axle 5

Place an axle joiner onto the 9V
motor’s shaft. Insert a 5 axle into the
other end of the axle joiner.

99

49

1 – Technic Gear 8 Tooth
1 – Technic Bush

Slide an 8t gear onto the 5 axle. Next,
slide a bushing onto the axle.

50

1 – Electric Rotation Sensor

Place the rotation sensor onto the end
of the axle in the direction shown.

51a

Insert the completed motor / rotation
sensor assembly onto the model as
shown.

51b

Note that when placed properly, the 8t
gear on the motor shaft aligns with
one of the mid-set 24t gears in the
gear train. Further, the rotation sensor
sits directly on top of two 1 x 4
technic gears used for the gear train
assembly.

51c

Further, note how the 1 x 2 brick near
the wheel supports the motor on its
right side.

100

52

Repeat Steps 49 – 51 for the second
motor / rotation sensor assembly.

53

Light Sensor Assembly:
1 – Slope Brick 33 3 x 2 Inverted

Attach the 3 x 2 inverted slope brick
to the front 1 x 6 technic brick. The
slope should be facing backward, over
the geartrain.

54

1 – Electric Light Sensor
1 – Plate 2 x 2
1 – Plate 1 x 2

Place the light sensor on top of the 3 x
2 inverted slope brick with the sensor
facing away from the gear train.

Place the 2 x 2 plate and the 1 x 2
plate on the light sensor as shown.

55

1 – Slope Brick 33 3 x 2 Inverted
1 – Plate 1 x 3

Place the 3 x 2 inverted slope brick on
top of the forward edge of the light
sensor with the slope going away from
the gear train.

Place the 1 x 3 plate on top of the 2 x
2 and 1 x 2 plates, as shown. The hole
created on the other side of the 1 x 3
plate will be used to run the wire from
the light sensor to the RCX.

101

56

RCX Support:
2 – Brick 2 x 2

Stack the 2 x 2 bricks on top of one
another. Place them at the rear of the
model, on top of the middle two studs
of the 1 x 16 technic brick and the 1 x
2 brick placed in Step 22.

57

1 – Slope Brick 33 3 x 2 Inverted
1 – Slope Brick 45 2 x 2 Inverted

Place the 3 x 2 inverted slope brick on
the forward edge of the 2 x 2 brick
placed in the last step. The slope
should be facing toward the gear train.

Place the 2 x 2 inverted slope brick on
the rear edge.

58

1 – Plate 6 x 10
1 – Brick 2 x 4

Looking down at the top of the model,
place the 6 x 10 plate as shown. The
plate should rest fully on top of the
rotation sensors, the 1 x 3 plate placed
in Step 55, and on the first row of
studs of the 3 x 2 inverted slope brick
placed in the last step.

Then, place the 2 x 4 brick behind it,
on top of the 2 x 2 inverted slope brick
and remaining two rows of studs of
the 3 x 2 inverted slope brick.

102

59

1 – Plate 2 x 4
2 – Plate 1 x 2
1 – Plate 1 x 6

Place the 2 x 4 plate on the 3 x 2
inverted slope brick that rests on top
of the light sensor. One row should
overlap onto the 6 x 10 plate placed in
the last step.

Place the two 1 x 2 plates to either
side, on the forward edge of the 6 x 10
plate, as shown.

Place the 1 x 6 plate along the trailing
edge of the 6 x 10 plate.

60

1 – Plate 1 x 2 with Door Rail

Insert the rail end of the door rail plate
into the upper support slot on the
right-hand side of one motor.

61

1 – Plate 1 x 2 with Door Rail

Turn the model around and repeat for
the other motor.

62

2 – Plate 1 x 2

From the top again, place a 1x 2 plate
onto each door rail plate placed in
Steps 60 and 61.

103

63

2 – Technic Plate 2 x 8 with Holes

Place the two 2 x 8 plates across 6 x
10 plate, as shown.

Each 2 x 8 plate should start from the
edge of the 6 x 10 plate, in front of the
center of a motor, and lock into the
motor / door rail assembly on the
other side.

64

2 – Plate 1 x 10
1 – Plate 2 x 10
1 – Plate 2 x 4

Place the 1 x 10 plates along the
edges, as shown.

The 2 x 10 should be placed down the
center of the RCX support assembly.

The 2 x 4 plate will cover the
remaining three studs of the 2 x 4
plate placed in Step 59 and should
overhang by 1 stud row.

65

1 – Electric Mindstorms RCX

Place the RCX onto the model. It
should rest evenly over the 2 x 10
plate.

104

66

Touch Sensor Assembly:
2 – Technic Brick 1 x 2 with Hole
1 – Brick 1 x 2

Place the two 1 x 2 technic bricks with
holes side by side up against the RCX.
The holes should face to the sides.

Place the 1 x 2 brick in front of them,
as shown.

67

3 – Plate 1 x 2

Place the three 1 x 2 plates as shown
to lock the 1 x 2 bricks from the
previous step into place.

68

1 – Electric Touch Sensor Brick 3 x 2
2 – Plate 1 x 2
1 – Electric connector

Place the touch sensor on top of the 1
x 2 plates installed in the last step.

Stack the two 1 x 2 plates and place
them on top of the touch sensor,
against the RCX, as shown.

Place one end of an electrical
connector onto the touch sensor now.

69

2 – Slope Brick 45 2 x 1 Inverted
1 – Technic Axle 6

Place the two 2 x 1 inverted slope
bricks on top of the 1 x 2 plate
installed last step. The slopes should
face forward.

Insert a 5 axle into the axle hole in the
touch sensor.

105

70

4 – Technic Bush

Slide two bushings onto each end of
the 5 axle installed last step.

71

Trap Motor Assembly:
2 – Plate 2 x 2 Corner

Place the two 2 x 2 corner plates on
top of the RCX as shown.

72

1 – Technic Axle 10
3 – Technic Bush
2 – Technic Brick 1 x 2 with Hole

Assemble the bushings and 1 x 2
bricks on the 10 axle as shown.

73

2 –Plate 2 x 2 Corner
2 – Plate 1 x 2 with Door Rail

Place the plates on the assembly as
shown. A corner piece and a rail each
go on top and on the bottom, in the
same position.

74

2 – Plate 1 x 4

Attach the 1 x 4 plates to the top and
bottom of the assembly, as shown.

75

1 – Electric Technic Mini-Motor 9V

Slide the door rail plates of into the
motor supports.

106

76

2 – Plate 2 x 2

Affix the motor to the assembly using
the two 2 x 2 plates on the top and
bottom, as shown.

77

1 – Technic Wedge Belt Wheel
2 – Electric Technic Micromotor
Pulley
1 – Technic Rubber Band Blue

Slide a wedge belt wheel onto the 10
axle and follow it with a micromotor
pulley.

Slide a micromotor pulley onto the
motor shaft.

Connect the micromotor pulley on the
motor shaft and the wedge belt wheel
with a blue technic rubber band.

78

Place the completed trap motor
assembly onto the RCX, as shown.

The curve on the bottom of the motor
should rest between the two corner
plates installed in Step 71 and the two
2 x 1 inverted slope bricks installed in
Step 69 should support the front of the
motor.

107

79

Bumper Assembly:
1 – Technic Axle 4

Insert the 4 axle into the holes in the 1
x 2 bricks installed in Step 66.

80

1 – Technic Lift Arm 1 x 9 Bent
1 – Technic Axle 4
4 – Technic Bush ½ Smooth

Slide the lift arm onto one end of the 4
axle installed in the last step. The axle
hole on the smaller end of the lift arm
should be used.

Place the 4 half bushings onto the
center of the other 4 axle. Insert this
axle into the hole at the corner of the
bent lift arm.

81

1 – Technic Lift Arm 1 x 9 Bent

Slide the technic lift arm onto the two
4 axles.

Ensure that the four half bushings
installed in the last step are in a
position to fully depress the touch
sensor button. It is usually most
effective when the edges of two half
bushing are centered on the touch
sensor.

108

82

 Technic Pin

1 – Technic Axle 12
2 – Technic Pin

Insert the 12 axle through the top two
axle holes of the 1 x 9 technic lift
arms. Center the axle and be sure that
it rests on top of the 10 axle of the trap
motor assembly.

Next, place the two technic pins into
the second hole of each technic lift
arm, the hole right above the axle
installed in Step 79.

83

 Liftarm 1 x 4

2 – Technic Liftarm 1 x 4

Slide a liftarm onto each end of the 12
axle, as shown. They should be at
least a plate’s width in from the ends.

84

 Connector

1 - Technic Axle 12
2 – Technic Connector with Axlehole
2 – Technic Flex-System Hose

Slide the 12 axle through the end
axleholes of the 1 x 4 liftarms
installed in the last step.

Place a connector with axlehole on
each end of the 12 axle.

Insert a flex-system hose into each
connector.

109

85

2 – Technic Rubber Band White

Place one rubber band on each side of
the bumper, connecting the technic
pin from Step 82 to the technic bush
from Step 70.

86

Trap Arm Assembly:
1 – Plate 1 x 6
1 – Technic Brick 1 x 6 with Holes

Place the 1 x 6 technic brick on top of
the 1 x 6 plate.

Install this assembly on the model’s
right side, as shown.

87

2 – Technic Axle Pin

Insert an axle pin into the center hole
of the 1 x 6 technic brick installed in
the last step.

Insert the other axle pin into the hole
in the 1 x 4 technic brick immediately
beneath.

88

 Liftarm 1x3 Double Pin

1 – Technic Liftarm 1 x 3
1 – Technic Pin 3L Double

Slide the 1 x 3 liftarm over the two
axle pins installed in the last step.

Insert the 3L double pin into the two
holes of the 1 x 6 technic brick as
shown.

110

89

 Connector Block

1 – Technic Connector Block 3 x 2 x 2
1 – Technic Axle 10
5 – Technic Bush

Place the connector block on the
double pin installed in the step above.
Slide the 10 axle through the top hole
of the connector block, as shown.

Place two bushings on the back of the
axle and three on the front, as shown.

90

1 – Technic Pole Reverser Handle
1 – Technic Angle Connector #5
1 – Technic Axle 8

Slide the pole reverser handle onto the
front end of the 10 axle from the
previous step.

Next, place the #5 angle connector on
the end of the pole reverser handle, as
shown.

Then, place the 8 axle into the other
end of the #5 angle connector.

91

2 – Technic Liftarm 1 x 3
1 – Technic Pole Reverser Handle
1 – Technic Angle Connector #5

Slide the two liftarms onto the 8 axle
from the previous step, as shown.

Slide the pole reverser handle onto the
8 axle with the axle portion facing
downward.

Place the #5 angle connector onto the
pole reverser handle, as shown.

Pole Reverser
Handle

#5 Angle
Connector

111

92

1 – Technic Rubber Band Yellow

Connect a yellow technic rubber band
from the bushing on the trap arm to
the micromotor pulley installed in
Step 77.

93

Arm Piece with Pin and 2 Fingers

Side Guards:
1 – Arm Piece with Pin and 2 Fingers

Slide the armpiece pin into the first
hole of the 1 x 16 technic brick.

The slots between the two fingers
should be sideways.

94

1 – Grab Jaw Holder

Snap the three fingers of the grab jaw
holder around the two fingers of the
arm piece installed above.

95

2 – Grab Jaw

Snap the two grab jaws into the grab
jaw holder installed in the last step.

Grab Jaw
Holder

Grab Jaw

112

96

1 – Arm Piece with Pin and 2 Fingers
1 – Grab Jaw Holder
2 – Grab Jaw

Repeat Steps 93 – 95 for the other
side.

97

RCX Rear Support:
3 – Plate 1 x 2
1 – Brick 1 x 2
2 – Technic Brick 1 x 2 with Hole
1 – Plate 2 x 4

Stack the three plates and three bricks
as shown.

Tie them into the RCX using the 2 x 4
plate as shown.

The robot model is now complete.

113

The table below, Table 4, lists the port configurations from the RCX to the individual
motors and sensors. If the motor turns the wrong way during operation, rotate one of the
plugs connected to that motor 180 degrees.

Table 4: RCX Port Configuration

Port Motor / Sensor
A Trap Motor
B Linear Motor (on the left, closest to the

front)
C Turn Motor
1 Turn Rotation Sensor (closest to the back)
2 Light Sensor / Touch Sensor (ganged)
3 Linear Rotation Sensor

114

APPENDIX F

CODE FOR THE REACTIVE ROBOTIC ARCHITECTURE

115

CODE FOR THE REACTIVE ROBOTIC ARCHITECTURE

The code for the reactive robotic architecture is split into multiple files with each file

encompassing a specific behavior. A subsumption architecture is used to coordinate the

individual behaviors.

//
// File: Reactive.nqc
// Version: 1.1.1
// Author: Gary R. Mayer
// Date: 24 August 2003
// Project: SIUE CIS 595 - Master's Thesis Project
//
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL
// ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM
//
// Description: This document provides the main task control for a
// reactive robot control architecture. Individual robot behaviors
// are coded in their respective files.
//
// Arbitration between active states is managed by an arbitration
// subfunction within main()
//
// Logic is based upon the basic Finite State Acceptor Diagram and
// Suppression Arbitration Networks.
//
// The code is written in Not Quite C (NQC), a C-like programming
// language that resides on top of the RCX brick's default firmware.
//
// RCX firmware version 2.0; NQC version 2.5 R1
//

#include "RGlobals.nqc" // global constants and variables
#include "RForage.nqc" // Forage behavior code
#include "RAcquire.nqc" // Acquire-Target behavior code
#include "RReturn.nqc" // Return-home behavior code
#include "RRelease.nqc" // Release-target behavior code
#include "RAvoid.nqc" // Avoid-obstacle behavior code

task main()
{
 int behavior_command;

 // clear display
 SetUserDisplay(0, 0);

116

 // initialize input / output ports
 Off(DRIVE_MOTOR);
 Off(TURN_MOTOR);
 SetPower(DRIVE_MOTOR, OUT_FULL);
 SetPower(TURN_MOTOR, OUT_FULL);
 SetSensorType(LIGHT_SENSOR, SENSOR_TYPE_LIGHT);
 SetSensorMode(LIGHT_SENSOR, SENSOR_MODE_PERCENT);
 SetSensor(DRIVE_ENCODER, SENSOR_ROTATION);
 SetSensor(TURN_ENCODER, SENSOR_ROTATION);
 SetTxPower(TX_POWER_LO); // set IR output level
 SetUserDisplay(0, 0); // clear display

 // Calibrate ambient and target light values.
 // Use bumper on light sensor as user input.
 PlaySound(SOUND_DOUBLE_BEEP);
 while (LIGHT_SENSOR < OBSTACLE_THRESHOLD);
 while (LIGHT_SENSOR > OBSTACLE_THRESHOLD);

 PlaySound(SOUND_CLICK);
 CalibrateLight();
 gAmbientLevel = gLightValue + LIGHT_BUFFER_AMB;
 SetUserDisplay(gAmbientLevel, 0);

 PlaySound(SOUND_DOUBLE_BEEP);
 while (LIGHT_SENSOR < OBSTACLE_THRESHOLD);
 while (LIGHT_SENSOR > OBSTACLE_THRESHOLD);

 PlaySound(SOUND_CLICK);
 CalibrateLight();
 gTargetThreshold = gLightValue - LIGHT_BUFFER_TGT;
 SetUserDisplay(gTargetThreshold, 0);

 PlaySound(SOUND_DOUBLE_BEEP);
 while (LIGHT_SENSOR < OBSTACLE_THRESHOLD);
 while (LIGHT_SENSOR > OBSTACLE_THRESHOLD);

 // Ensure disparity exists btwn ambient and target values.
 if (gTargetThreshold - gAmbientLevel < TARGET_DIFF)
 {
 PlaySound(SOUND_DOWN);
 return;
 }

 Wait(WAIT_TIME);
 gLightValue = gAmbientLevel;
 SetUserDisplay(gLightValue, 0);

 // Start default robot behaviors
 start avoid_task;
 start release_task;
 start return_task;
 start acquire_task;
 start forage_task;

117

 // Arbitrate robot shared resources.
 while (1)
 {
 behavior_command = COMMAND_NONE;
 gLightValue = LIGHT_SENSOR;
 gDriveEncoderTicks = DRIVE_ENCODER;
 gTurnEncoderTicks = TURN_ENCODER;
 gIR_Message = Message();

 if (gAvoidCommand != COMMAND_NONE)
 {
 behavior_command = gAvoidCommand;
 SetUserDisplay(1, 0);
 }

 else if (gReleaseCommand != COMMAND_NONE)
 {
 behavior_command = gReleaseCommand;
 SetUserDisplay(2, 0);
 }

 else if (gReturnCommand != COMMAND_NONE)
 {
 behavior_command = gReturnCommand;
 SetUserDisplay(3, 0);
 }

 else if (gAcquireCommand != COMMAND_NONE)
 {
 behavior_command = gAcquireCommand;
 SetUserDisplay(4, 0);
 }

 else if (gForageCommand != COMMAND_NONE)
 {
 behavior_command = gForageCommand;
 SetUserDisplay(5, 0);
 }

 ExecuteCommand(behavior_command);
 }

} // end task main()

void ExecuteCommand(int& behavior_command)
{
 switch (behavior_command)
 {
 case COMMAND_STOP:
 Off(DRIVE_MOTOR);
 Off(TURN_MOTOR);
 Float(TRAP_MOTOR);
 break;

118

 case COMMAND_FORWARD:
 Off(TURN_MOTOR);
 Float(TRAP_MOTOR);
 OnFwd(DRIVE_MOTOR);
 break;

 case COMMAND_REVERSE:
 Off(TURN_MOTOR);
 Float(TRAP_MOTOR);
 OnRev(DRIVE_MOTOR);
 break;

 case COMMAND_LEFT:
 Off(DRIVE_MOTOR);
 Float(TRAP_MOTOR);
 OnRev(TURN_MOTOR);
 break;

 case COMMAND_RIGHT:
 Off(DRIVE_MOTOR);
 Float(TRAP_MOTOR);
 OnFwd(TURN_MOTOR);
 break;

 case COMMAND_CAPTURE:
 Off(DRIVE_MOTOR);
 Off(TURN_MOTOR);
 OnFwd(TRAP_MOTOR);
 Wait(TRAP_TIME);
 Float(TRAP_MOTOR);
 break;

 case COMMAND_RELEASE:
 Off(DRIVE_MOTOR);
 Off(TURN_MOTOR);
 OnRev(TRAP_MOTOR);
 Wait(TRAP_TIME);
 Float(TRAP_MOTOR);
 break;

 case COMMAND_RESET_DRIVE_ENCODER:
 ClearSensor(DRIVE_ENCODER);
 gDriveEncoderTicks = DRIVE_ENCODER;
 break;

 case COMMAND_RESET_TURN_ENCODER:
 ClearSensor(TURN_ENCODER);
 gTurnEncoderTicks = TURN_ENCODER;
 break;

 case COMMAND_RESET_MESSAGE:
 ClearMessage();
 break;

119

 deafult:
 break;
 }
}

sub CalibrateLight()
{
 int i;
 int avg = 0;
 int num_times = 15;

 for (i = 0; i < num_times; i++)
 {
 avg = avg + LIGHT_SENSOR;
 Wait(WAIT_TIME);
 }

 avg = avg / num_times;

 gLightValue = avg;
}

120

//
// File: RGlobals.nqc
// Version: 1.1.2
// Author: Gary R. Mayer
// Date: 26 August 2003
// Project: SIUE CIS 595 - Master's Thesis Project
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL
// ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM
//
// Description: This file provides the global constants and
// variables used throughout the reactive robot control
// architecture.
//
// RCX firmware version 2.0; NQC version 2.5 R1
//

/* *** PREPROCESSOR DEFINITIONS *** */
/* Motor name assignments. */
#define TRAP_MOTOR OUT_A
#define DRIVE_MOTOR OUT_B
#define TURN_MOTOR OUT_C

/* Sensor name assignments. */
#define TURN_ENCODER SENSOR_1
#define LIGHT_SENSOR SENSOR_2
#define DRIVE_ENCODER SENSOR_3

/* Drive encoder ticks in 10" grid length. */
#define GRID_LENGTH_TICKS 252

/* Turn encoder ticks in 90 degree turn. */
#define TURN_LENGTH_TICKS 64

/* Units of 10ms to wait to allow trap arm to raise or lower. */
#define TRAP_TIME 100

/* Units of 10ms to wait for arbitrator to manage command request. */
#define WAIT_TIME 45

#define RESPONSE_TIME 50

/* Note: The rotation sensor (encoder) provides 16 ticks per */
/* rotation. Both the drive and turn encoders are geared to the */
/* motor with a 1:1 ratio. The encoders are geared down to the */
/* wheel axle with a 1:6 ratio. Thus, every revolution of the */
/* wheel yields 96 ticks on the encoder. */

/* LIGHT VALUES (0 - 100 scale) */
/* Higher values indicate brighter viewed source. */

/* Value indicates when a touch sensor is considered impacted. */
#define OBSTACLE_THRESHOLD 100

121

/* Buffer for ambient threshold. */
#define LIGHT_BUFFER_AMB 5

/* Buffer for target threshold. */
#define LIGHT_BUFFER_TGT 5
/* Minimum difference allowed between ambient and target calibrations. */
#define TARGET_DIFF 10

/* BOOLEAN CONSTANTS */
#define TRUE 1
#define FALSE 0

/* BEHAVIOR COMMANDS */
/* Output commands behaviors request of the arbitrator. */

/* Behavior has no desired output. */
#define COMMAND_NONE -1

#define COMMAND_STOP 0
#define COMMAND_FORWARD 1
#define COMMAND_REVERSE 2
#define COMMAND_LEFT 3
#define COMMAND_RIGHT 4
#define COMMAND_CAPTURE 5
#define COMMAND_RELEASE 6
#define COMMAND_RESET_DRIVE_ENCODER 7
#define COMMAND_RESET_TURN_ENCODER 8
#define COMMAND_RESET_MESSAGE 9

/* IR MESSAGES */
#define IR_MSG_MARCO 2
#define IR_MSG_POLO 5
#define IR_MSG_ATHOME 10 /* Impacted Home */

/* *** GLOBAL VARIABLES *** */

// Sensor variables.
int gLightValue; // Light value of light/touch sensor.
int gAmbientLevel, gTargetThreshold; // Threshold values.
int gDriveEncoderTicks = 0; // Drive encoder reading.
int gTurnEncoderTicks = 0;
int gIR_Message;
int gAvoidCommand, gReleaseCommand, gReturnCommand, gAcquireCommand,
gForageCommand;
int gTargetTrapped = FALSE; // Internal state of trap arm.

122

//
// File: RForage.nqc
// Version: 1.1.1
// Author: Gary R. Mayer
// Date: 24 August 2003
// Project: SIUE CIS 595 - Master's Thesis Project
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL
// ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM
//
// Description: This document provides a portion of code for a
// reactive robot control architecture. Specifically, it implements
// a Forage behavior. The details are explained below.
//
// Logic is based upon the basic Finite State Acceptor Diagram and
// Suppression Arbitration Networks.
//
// The code is written in Not Quite C (NQC), a C-like programming
// language that resides on top of the RCX brick's default firmware.
//
// RCX firmware version 2.0; NQC version 2.5 R1
//

task forage_task()
{
 int direction;
 int ticks; // Amount to turn; modified randomly.

 gForageCommand = COMMAND_NONE;
 SetRandomSeed(Timer(1));

 // Repeat indefinitely.
 while (1)
 {
 // Randomly determine direction to turn.
 direction = Random(3) + 1; // Random value of 1 - 4.

 if ((direction == 2) || (direction == 3))
 {
 // Prepare for turn.
 gForageCommand = COMMAND_RESET_TURN_ENCODER;
 ticks = Random(TURN_LENGTH_TICKS/4) + 5;
 Wait(WAIT_TIME);

 if (direction == 2)
 {
 // Turn left.
 gForageCommand = COMMAND_LEFT;
 while (gTurnEncoderTicks > -ticks);
 }

123

 else
 {
 // Turn right.
 gForageCommand = COMMAND_RIGHT;
 while (gTurnEncoderTicks < ticks);
 }

 gForageCommand = COMMAND_STOP;
 Wait(WAIT_TIME);
 }

 // Move forward a random amount.
 gForageCommand = COMMAND_RESET_DRIVE_ENCODER;
 ticks = Random(GRID_LENGTH_TICKS/4) +
 (GRID_LENGTH_TICKS/ 4);
 Wait(WAIT_TIME);
 gForageCommand = COMMAND_FORWARD;
 while (gDriveEncoderTicks < ticks);
 gForageCommand = COMMAND_STOP;
 Wait(WAIT_TIME);
 }

} // end forage_task()

124

//
// File: RAcquire.nqc
// Version: 1.1.2
// Author: Gary R. Mayer
// Date: 26 August 2003
// Project: SIUE CIS 595 - Master's Thesis Project
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL
// ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM
//
// Description: This document provides a portion of code for a
// reactive robot control architecture. Specifically, it implements
// an Acquire-Target behavior. The details are explained below.
//
// Logic is based upon the basic Finite State Acceptor Diagram and
// Suppression Arbitration Networks.
//
// The code is written in Not Quite C (NQC), a C-like programming
// language that resides on top of the RCX brick's default firmware.
//
// RCX firmware version 2.0; NQC version 2.5 R1
//

task acquire_task()
{
 int light_reading;
 int ticks;
 gAcquireCommand = COMMAND_NONE;

 // Repeat indefinitely.
 while (1)
 {
 // Get target.
 if (gTargetTrapped == FALSE)
 {
 light_reading = gLightValue;

 // Target in trap; capture it.
 if ((light_reading < OBSTACLE_THRESHOLD) &&
 (light_reading >= gTargetThreshold))
 {
 gAcquireCommand = COMMAND_CAPTURE;
 Wait(WAIT_TIME);
 Wait(TRAP_TIME);

 gAcquireCommand = COMMAND_STOP;
 Wait(WAIT_TIME);

 gAcquireCommand = COMMAND_RESET_MESSAGE;
 Wait(WAIT_TIME);

125

 gTargetTrapped = TRUE;
 gAcquireCommand = COMMAND_NONE;
 Wait(WAIT_TIME);
 }

 // Target seen; move toward it.
 else if ((light_reading > gAmbientLevel) &&
 (light_reading < gTargetThreshold))
 {
 gAcquireCommand = COMMAND_FORWARD;

 while ((light_reading > gAmbientLevel) &&
 (light_reading < gTargetThreshold))
 {
 light_reading = gLightValue;
 }

 gAcquireCommand = COMMAND_STOP;
 Wait(WAIT_TIME);

 // Check if target was bypassed.
 if (light_reading < gTargetThreshold)
 {
 // Look left.
 gAcquireCommand =
 COMMAND_RESET_TURN_ENCODER;
 Wait(WAIT_TIME);

 ticks = -TURN_LENGTH_TICKS / 2;
 gAcquireCommand = COMMAND_LEFT;
 while ((gTurnEncoderTicks > ticks) &&
 (gLightValue < gAmbientLevel));
 gAcquireCommand = COMMAND_STOP;
 Wait(WAIT_TIME);
 }

 if (gLightValue <= gAmbientLevel)
 {
 // Look right.
 gAcquireCommand =
 COMMAND_RESET_TURN_ENCODER;
 Wait(WAIT_TIME);

 ticks = TURN_LENGTH_TICKS;
 gAcquireCommand = COMMAND_RIGHT;
 while ((gTurnEncoderTicks < ticks) &&
 (gLightValue < gAmbientLevel));
 gAcquireCommand = COMMAND_STOP;
 Wait(WAIT_TIME);
 }
 }

126

 // Target not found.
 else
 {
 gAcquireCommand = COMMAND_NONE;
 }
 }

 // Target is already held. Take no action.
 else
 {
 gAcquireCommand = COMMAND_NONE;
 }
 }

} // end acquire_task()

127

//
// File: RReturn.nqc
// Version: 1.1.2
// Author: Gary R. Mayer
// Date: 27 August 2003
// Project: SIUE CIS 595 - Master's Project
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL
// ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM
//
// Description: This document provides a portion of code for a
// reactive robot control architecture. Specifically, it implements
// a Return-home behavior. The details are explained below.
//
// Logic is based upon the basic Finite State Acceptor Diagram and
// Suppression ArbitrationNetworks.
//
// The code is written in Not Quite C (NQC), a C-like programming
// language that resides on top of the RCX brick's default firmware.
//
// RCX firmware version 2.0; NQC version 2.5 R1
//

task return_task()
{
 int light_reading;
 int count1, count2;
 int direction;
 int ticks;

 gReturnCommand = COMMAND_NONE;
 SetRandomSeed(Timer(1));

 // Repeat indefinitely.
 while (1)
 {
 // Take no action unless target is trapped.
 if (gTargetTrapped == FALSE)
 {
 gReturnCommand = COMMAND_NONE;
 continue;
 }

 // Send message request to Home.
 SendMessage(IR_MSG_MARCO);
 Wait(RESPONSE_TIME);

 if (gIR_Message == IR_MSG_POLO)
 {
 PlaySound(SOUND_CLICK);

 gReturnCommand = COMMAND_RESET_DRIVE_ENCODER;
 ticks = Random(GRID_LENGTH_TICKS/3) + 20;

128

 Wait(WAIT_TIME);

 gReturnCommand = COMMAND_FORWARD;
 while (gDriveEncoderTicks < ticks);
 }

 // No response received or response lost.
 // Face a different direction or move.
 else
 {
 // Random value of 1 - 10.

 direction = Random(10) + 1;

 if (direction == 3)
 {
 // Turn right.
 gReturnCommand =
 COMMAND_RESET_DRIVE_ENCODER;
 ticks = Random(TURN_LENGTH_TICKS/4) + 5;
 Wait(WAIT_TIME);

 gReturnCommand = COMMAND_RIGHT;
 while ((gTurnEncoderTicks < ticks) &&
 (gIR_Message != IR_MSG_POLO) &&
 (gIR_Message != IR_MSG_ATHOME));
 }

 else if (direction < 8)
 {
 // Turn left.
 gReturnCommand = COMMAND_RESET_TURN_ENCODER;
 ticks = Random(TURN_LENGTH_TICKS/5) + 5;
 Wait(WAIT_TIME);

 gReturnCommand = COMMAND_LEFT;
 while ((gTurnEncoderTicks > -ticks) &&
 (gIR_Message != IR_MSG_POLO) &&
 (gIR_Message != IR_MSG_ATHOME));
 }

 else
 {
 // Move forward until robot hits something
 // or sees a signal from Home.
 gReturnCommand = COMMAND_RESET_MESSAGE;
 Wait(WAIT_TIME);
 gReturnCommand = COMMAND_FORWARD;

129

 while ((gLightValue < OBSTACLE_THRESHOLD) &&
 (gIR_Message != IR_MSG_POLO) &&
 (gIR_Message != IR_MSG_ATHOME))
 {
 SendMessage(IR_MSG_MARCO);
 Wait(WAIT_TIME);
 }
 }
 }

 gReturnCommand = COMMAND_STOP;
 Wait(WAIT_TIME);
 gReturnCommand = COMMAND_RESET_MESSAGE;
 Wait(WAIT_TIME);
 }

} // end return_task()

130

//
// File: RRelease.nqc
// Version: 1.1.1
// Author: Gary R. Mayer
// Date: 26 August 2003
// Project: SIUE CIS 595 - Master's Project
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL
// ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM
//
// Description: This document provides a portion of code for a
// reactive robot control architecture. Specifically, it implements
// a Home behavior that also releases targets. The details are
// explained below.
//
// Logic is based upon the basic Finite State Acceptor Diagram and
// Suppression Arbitration Networks.
//
// The code is written in Not Quite C (NQC), a C-like programming
// language that resides on top of the RCX brick's default firmware.
//
// RCX firmware version 2.0; NQC version 2.2 R2
//

task release_task()
{
 gReleaseCommand = COMMAND_NONE;

 // Repeat indefinitely.
 while (1)
 {
 // Heard "At Home" message from RCX Home; drop target.
 if ((gTargetTrapped == TRUE) &&
 (gIR_Message == IR_MSG_ATHOME))
 {

 // Back away from Home a bit.
 gReleaseCommand = COMMAND_STOP;
 Wait(WAIT_TIME);
 gReleaseCommand = COMMAND_RESET_DRIVE_ENCODER;
 Wait(WAIT_TIME);
 gReleaseCommand = COMMAND_REVERSE;
 while (gDriveEncoderTicks >
 -(GRID_LENGTH_TICKS / 6));
 gReleaseCommand = COMMAND_FORWARD;
 Wait(WAIT_TIME);
 gReleaseCommand = COMMAND_STOP;
 Wait(WAIT_TIME);

 // Release target.
 gReleaseCommand = COMMAND_RELEASE;
 Wait(WAIT_TIME);
 Wait(TRAP_TIME);

131

 gReleaseCommand = COMMAND_RESET_DRIVE_ENCODER;
 Wait(WAIT_TIME);
 gReleaseCommand = COMMAND_REVERSE;
 while (gDriveEncoderTicks >
 -(GRID_LENGTH_TICKS / 4));
 gReleaseCommand = COMMAND_STOP;
 Wait(WAIT_TIME);

 // Turn robot and prepare to find next target.
 gReleaseCommand = COMMAND_RESET_TURN_ENCODER;
 Wait(WAIT_TIME);
 gReleaseCommand = COMMAND_LEFT;
 while (gTurnEncoderTicks >
 -(TURN_LENGTH_TICKS * 2));
 gReleaseCommand = COMMAND_STOP;
 Wait(WAIT_TIME);

 gTargetTrapped = FALSE;

 gReleaseCommand = COMMAND_RESET_MESSAGE;
 Wait(WAIT_TIME);

 gReleaseCommand = COMMAND_NONE;
 }

 // Do nothing until target is trapped.
 else
 {
 gReleaseCommand = COMMAND_NONE;
 Wait(WAIT_TIME);
 }
 }

} // end release_task()

132

//
// File: RAvoid.nqc
// Version: 1.1.1
// Author: Gary R. Mayer
// Date: 24 August 2003
// Project: SIUE CIS 595 - Master's Project
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL
// ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM
//
// Description: This document provides a portion of code for a
// reactive robot control architecture. Specifically, it implements
// an Avoid-obstacle behavior. The details are explained below.
//
// Logic is based upon the basic Finite State Acceptor Diagram and
// Suppression Arbitration Networks.
//
// The code is written in Not Quite C (NQC), a C-like programming
// language that resides on top of the RCX brick's default firmware.
//
// RCX firmware version 2.0; NQC version 2.4 R2
//

task avoid_task()
{
 int ticks;
 int direction;

 gAvoidCommand = COMMAND_NONE;

 // Repeat indefinitely.
 while (1)
 {
 // Back away and turn if an obstacle is impacted.
 if (gLightValue >= OBSTACLE_THRESHOLD)
 {
 // Back away and turn around.
 gAvoidCommand = COMMAND_STOP;
 Wait(WAIT_TIME);
 gAvoidCommand = COMMAND_RESET_DRIVE_ENCODER;
 Wait(WAIT_TIME);
 gAvoidCommand = COMMAND_REVERSE;
 while (gDriveEncoderTicks >
 -(GRID_LENGTH_TICKS / 4));
 gAvoidCommand = COMMAND_STOP;
 Wait(WAIT_TIME);

 direction = Random(4) + 1;
 gAvoidCommand = COMMAND_RESET_TURN_ENCODER;
 Wait(WAIT_TIME);
 ticks = Random(TURN_LENGTH_TICKS/2) +
 (TURN_LENGTH_TICKS / 4);

133

 if ((direction == 1) || (direction == 3))
 {
 // Turn left.
 gAvoidCommand = COMMAND_LEFT;
 while ((gTurnEncoderTicks > -ticks) &&
 (gLightValue < OBSTACLE_THRESHOLD));
 }

 else
 {
 // Turn right.
 gAvoidCommand = COMMAND_RIGHT;
 while ((gTurnEncoderTicks < ticks) &&
 (gLightValue < OBSTACLE_THRESHOLD));
 }

 gAvoidCommand = COMMAND_STOP;
 Wait(WAIT_TIME);

 // End behavior if obstacles successfully avoided.
 if (gLightValue < OBSTACLE_THRESHOLD)
 {
 gAvoidCommand = COMMAND_NONE;
 }
 }

 else
 {
 gAvoidCommand = COMMAND_NONE;
 }
 }

} // end avoid_task()

134

//
// File: RHOME.nqc
// Version: 1.2.2
// Author: Gary R. Mayer
// Date: 26 August 2003
// Project: SIUE CIS 595 - Master's Project
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL
// ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM
//
// Description: This document provides the code for a reactive
// robotic system. Specifically, the robot is provided a return
// home behavior that enables it to locate and maneuver towards a
// fixed location in the arena called HOME. This code resides on
// the RCX unit that acts as HOME. It awaits an infrared (IR) signal
// from the robot indicating that it is looking for HOME. This
// signal is referred to as “Marco.” HOME then emits a response IR
// signal, “Polo,” to guide the robot toward it. HOME will then emit
// a different IR signal to inform the robot that it has reached
// HOME when the robot hits its bumper, triggering its touch sensor.
//
// Logic is based upon the basic Finite State Acceptor Diagram.
//
// The code is written in Not Quite C (NQC),a C-like programming
// language that resides on top of the RCX brick's default firmware.
//
// RCX firmware version 2.0; NQC version 2.5 R1
//

#define BUMPER SENSOR_1

#define IR_MSG_MARCO 2
#define IR_MSG_POLO 5
#define IR_MSG_ATHOME 10

#define PAUSE_TIME 30

task main()
{
 int response = 0;
 int echos = 3;

 //Set IR transmission power.
 SetTxPower(TX_POWER_HI);

 // Set bumper sensor.
 SetSensor(BUMPER, SENSOR_TOUCH);

135

 // Repeat indefinitely.
 while (1)
 {
 if (Message() == IR_MSG_MARCO)
 {
 PlaySound(SOUND_DOUBLE_BEEP);

 while (response < echos)
 {
 SendMessage(IR_MSG_POLO);
 Wait(PAUSE_TIME);
 response++;
 }

 response = 0;
 ClearMessage();
 }

 while (BUMPER == true)
 {
 SendMessage(IR_MSG_ATHOME);
 PlaySound(SOUND_UP);
 Wait(PAUSE_TIME/2);
 }
 }

} // end main()

136

APPENDIX G

CODE FOR THE DELIBERATIVE ROBOTIC ARCHITECTURE

137

CODE FOR THE DELIBERATIVE ROBOTIC ARCHITECTURE

The code for the deliberative robotic architecture is written in IC4, version 4.21, and

contained in a single file.

//
// File: Deliberative.ic
// Author: Gary R. Mayer
// Date: 21 August 2003
// Version: 1.0.0
// Project: SIUE CIS 595 - Master's Thesis Project
// Language: Interactive C v4.2
//
// Description: This program provides a deliberate robotic architecture
// for a LEGO Mindstorms RCX controller. The program maintains the
// robot's current position in an arena. The arena map is maintained as
// a grid and the program uses a wavefront algorithm to plan movement
// from the robot's current position to a desired goal position.
//
// Obstacles are initially hand designated, as are the goal position(s),
// starting location, and starting heading. At least one goal and the
// starting location must be specified. When entering data, if a 0 is
// entered for the row number, it assumed that data entry for that object
// type is complete. If the robot's sensors detect an inconsistency in
// the world map, then it will stop its current progress, update the map,
// and replan.
//
// Note that it is not intended for the robot to travel diagonally.
//

/* PREPROCESSOR CONSTANT DEFINITIONS */
#define DEBUG /* LCD debug output. */
//#define TRACE

#define ROWS 6 /* 4 working rows. */
#define COLS 8 /* 6 working columns. */
#define STEPS 19 /* Max anticipated steps. */
#define MAX_GOALS 5 /* Max number of goals */
#define MAX_OBSTACLES 10

#define ROW 0 /* Row element ref. */
#define COL 1 /* Column element ref. */

#define TRUE 1
#define FALSE 0

#define NORTH 0
#define EAST 1
#define SOUTH 2
#define WEST 3

138

#define TRAP_MOTOR 1
#define DRIVE_MOTOR 2
#define TURN_MOTOR 3

#define TURN_ENCODER 1
#define LIGHT_SENSOR 2 /* Touch sensor ganged. */
#define DRIVE_ENCODER 3

#define TRAP_SPEED 70
#define DRIVE_SPEED 100
#define TURN_SPEED 100

#define GRID_LENGTH_TICKS 252
#define TURN_LENGTH_TICKS 70
#define DRIVE_TICKS_CORRECTION 8 /* Gear slop correction for

Fwd->Rev and Rev->Fwd. */
#define TURN_TICKS_CORRECTION 3 /* Gear slop correction for

changing turn direction.*/
#define TRAP_TIME 1.0

#define START 0
#define OBSTACLE 1
#define GOAL 2

/* Drive and turn motors’ direction last traveled. Used to */
/* modify ticks traveled and compensate for gear slop. */
#define FORWARD 0
#define REVERSE 1
#define LEFT 2
#define RIGHT 3

#define OBSTACLE_THRESHOLD 70
#define LIGHT_BUFFER_AMB 40
#define LIGHT_BUFFER_TGT 50
#define TARGET_DIFF 25

/* Path creation flags to determine if wavefront algorithm */
/* should consider known goals as obstacles or consider them */
/* as empty space. */
#define SHORTEST_PATH 0
#define AVOID_KNOWN_GOALS 1

/* Error codes. */
#define ERROR_NO_PATH -100 /* No path to goal */
#define ERROR_NO_GOALS -110 /* No known goals remain */

/* GLOBAL VARIABLES */
int gGrid[ROWS][COLS]; // Arena (with boundary edges).
int gStartPosition[2]; // Start position robot returns to.
int gCurrentPosition[2]; // Robot's current position in arena.
int gHeading; // Robot's internal facing reference.
int gGoals[MAX_GOALS][2]; // Known goal locations in arena.

139

int gNumGoals = 0; // Number of goals in arena.
int gCurrentGoal = 0; // Current goal being sought.
int gObstacles[MAX_OBSTACLES][2]; // Obstacle locations in arena.
int gNumObstacles = 0; // Number of obstacles in arena.

int gPath[STEPS][2]; // Path to nearest goal.
int gHaveTarget = FALSE; // Target is currently being held.

int gAmbient; // Arena ambient light value.
int gTargetThreshold; // Target ambient light value.

int gMovingForward = FALSE;

int gLastDrive = FORWARD;
int gLastTurn = LEFT;

// Process identification numbers.
int gRetrieve_PID, gLook_PID;

/* Function: main() - primary program flow of control */
void main()
{
 // Clear display.
 printf("");

 // Calbrate light sensor to arena ambient average.
 while (!prgm_button());
 while (prgm_button());
 printf("CAML");
 beep();

 gAmbient = CalibrateLight() - LIGHT_BUFFER_AMB;

 #ifdef DEBUG
 printf("A%d", gAmbient);
 beep();
 #endif

 while (!prgm_button());
 while (prgm_button());

 // Calibrate target threshold to target light average.
 printf("CTGL");
 beep();

 gTargetThreshold = CalibrateLight() + LIGHT_BUFFER_TGT;

 #ifdef DEBUG
 printf("T%d", gTargetThreshold);
 beep();
 #endif

140

 while (!prgm_button());
 while (prgm_button());

 // Ensure enough disparity exists between light readings.
 if (gTargetThreshold >= gAmbient - TARGET_DIFF)
 {
 printf("ERR");
 beep();
 beep();
 beep();
 beep();

 return;
 }

 // Enable encoders.
 enable_bidir_encoder(DRIVE_ENCODER);
 enable_bidir_encoder(TURN_ENCODER);
 reset_encoder(DRIVE_ENCODER);
 reset_encoder(TURN_ENCODER);

 // Get obstacle positions from user.
 GetPosition(OBSTACLE);

 // Get goal positions from user.
 GetPosition(GOAL);

 // Get robot starting position and heading from user.
 GetPosition(START);
 GetStartHeading();

 // Clear display.
 printf("");

 // Start the processes that monitor the sensors and
 // path planning to the known targets.
 gLook_PID = start_process(LookAhead());
 gRetrieve_PID = start_process(RetrieveGoals());

 // Wait until all known goals are found.
 while ((gNumGoals != 0) ||
 (gCurrentPosition[ROW] != gStartPosition[ROW]) ||
 (gCurrentPosition[COL] != gStartPosition[COL]))
 sleep(0.25);

 sleep (1.0);

 // Kill all processes and signal completion.
 kill_process(gLook_PID);
 kill_process(gRetrieve_PID);

141

 if (gHaveTarget == TRUE)
 {
 motor(TRAP_MOTOR, -TRAP_SPEED);
 sleep(TRAP_TIME);
 off(TRAP_MOTOR);

 gHaveTarget = FALSE;
 }

 beep();
 beep();

 return;

} // end main()

/*********************************/
/** MAJOR PROCESS FUNCTIONS **/
/*********************************/
// Process: MonitorTouchSensor
// Monitor touch sensor(s) for possible failed plan
// caused by impact with unknown obstacles.
void LookAhead(void)
{
 int light_reading;

 while (1)
 {
 // Only seek new obstacles / goals while moving forward.
 // Input from turning will yield unexpected results.
 if ((gNumGoals != 0) &&
 (gMovingForward == TRUE))
 {
 light_reading = light(LIGHT_SENSOR);

 // Take another reading to allow sensor to settle.
 if (light_reading < gTargetThreshold)
 // if (light_reading < gAmbient)
 {
 sleep(0.25);
 light_reading = light(LIGHT_SENSOR);
 }

 // Check if new obstacle was found.
 if (light_reading < OBSTACLE_THRESHOLD)
 {
 // Stop current path following, update map, and
 // back robot up to last safe position.
 kill_process(gRetrieve_PID);
 brake(DRIVE_MOTOR);
 gMovingForward = FALSE;
 AddObstacle(gCurrentPosition[ROW], gCurrentPosition[COL]);

142

 BackUp();

 // Restart path following process (will force replan).
 gRetrieve_PID = start_process(RetrieveGoals());
 }

 // Check if light sensor found new goal.
 else if ((gHaveTarget == FALSE) &&
 ((gCurrentPosition[ROW] != gGoals[gCurrentGoal][ROW]) ||
 (gCurrentPosition[COL] != gGoals[gCurrentGoal][COL])) &&
 (light_reading <= gTargetThreshold))
 {
 // Stop current path following, update map, and
 // back robot up to last safe position.
 kill_process(gRetrieve_PID);
 brake(DRIVE_MOTOR);
 gMovingForward = FALSE;
 AddGoal(gCurrentPosition[ROW], gCurrentPosition[COL]);
 BackUp();

 // Restart path following process (will force replan).
 gRetrieve_PID = start_process(RetrieveGoals());
 }
 }
 }

 return;

} // end LookAhead()

// Process: RetrieveGoals
// Retrieve known goals and return them to start location.
void RetrieveGoals(void)
{
 int num_steps;
 int light_reading;

 // Repeat indefinitely.
 while (1)
 {
 #ifdef TRACE
 printf("InRG");
 beep();
 sleep(1.5);
 #endif

 num_steps = ERROR_NO_PATH;

143

 // Ensure path exists between current location and goal.
 while (num_steps == ERROR_NO_PATH)
 {
 // Find nearest goal.
 // If a target is held, the start position is the goal.
 if (gHaveTarget == TRUE)
 {
 AddGoal(gStartPosition[ROW], gStartPosition[COL]);
 gCurrentGoal = gNumGoals - 1;
 }

 else
 gCurrentGoal = FindClosestGoal();

 #ifdef TRACE
 printf("CG%d", gCurrentGoal);
 tone(250.5, 0.5);
 sleep(3.0);
 #endif

 // Quit if no goals remain.
 if (gCurrentGoal == ERROR_NO_GOALS)
 return;

 // Create a travel path.
 num_steps = CreatePath(gCurrentGoal, AVOID_KNOWN_GOALS);

 if (num_steps == ERROR_NO_PATH)
 {
 // Attempt to create path Home failed.
 if (gHaveTarget == TRUE)
 {
 // Try to create a path through known goals.
 num_steps = CreatePath(gCurrentGoal, SHORTEST_PATH);

 // If the second attempt at returning Home is invalid,
 // robot is seperated from Home by obstacles.
 if (num_steps == ERROR_NO_PATH)
 {
 // Signal error and set the number of remaining
 // goals to 0 to cause main() to exit.
 printf("ERR");
 beep();
 beep();
 beep();
 sleep(2.0);
 gNumGoals = 0;

 return;
 }
 }

144

 // Attempt to create path to a goal failed.
 else
 RemoveGoal(gCurrentGoal); // Delete goal.
 }
 }

 // Follow travel path to goal.
 FollowPath(num_steps);

 // Deal with target at destination.
 if (gHaveTarget == FALSE)
 {
 light_reading = light(LIGHT_SENSOR);

 // Capture target goal if it is there.
 if ((light_reading < gTargetThreshold) &&
 // if ((light_reading < gAmbient) &&
 (light_reading > OBSTACLE_THRESHOLD))
 CaptureTarget();

 else
 {
 // No target; signal plan failure.
 tone(90.0, 0.5);
 tone(10.0, 0.5);
 }
 }

 else
 {
 ReleaseTarget();

 // Announce target dropped and await signal to continue.
 // Note: Human can reposition robot to maintain localization.
 tone(5000.0, 0.5);
 tone(4000.0, 0.5);
 tone(3000.0, 0.35);
 tone(1500.0, 0.25);

 while (!prgm_button());
 while (prgm_button());

 sleep(1.0);
 gHaveTarget = FALSE;
 }

 // Remove goal from goal list.
 RemoveGoal(gCurrentGoal);
 }

 return;

} // end RetrieveTargets()

145

/**/
/**** INITIALIZATION FUNCTIONS ****/
/**/
// Provide an average of readings for the light sensor over time.
int CalibrateLight(void)
{
 int i;
 int num_samples = 15;
 float wait_time = 0.35;
 int amb = 0;

 for (i = 0; i < num_samples; i++)
 {
 amb = amb + light(LIGHT_SENSOR);
 sleep(wait_time);
 }

 amb = amb / num_samples;

 return amb;

} // end CalibrateLight()

// Get position(s) of obstacle(s), goal(s) and start location. A selection
// of 0 for the row indicates data entry is complete for that data type.
void GetPosition(int type)
{
 int row = 999; // row number
 int col = 999; // column number
 int change = FALSE; // The number should change.
 int select = FALSE; // The number has been selected.
 int reset_zero; // Force numbers to cycle between 0 and max

// or 1 and max.

 if (type == OBSTACLE)
 {
 reset_zero = TRUE; // Obstacles are optional.
 }

 else
 {
 reset_zero = FALSE; // A goal and start location must be input.
 }

 while (row != 0)
 {
 if (reset_zero == TRUE)
 {
 row = 0;
 }

146

 else
 {
 row = 1;
 }

 select = FALSE;
 change = FALSE;

 while (select == FALSE)
 {
 if (type == OBSTACLE)
 {
 printf("or%d", row);
 }

 else if (type == GOAL)
 {
 printf("gr%d", row);
 }

 else
 {
 printf("Sr%d", row);
 }

 if (view_button())
 {
 change = TRUE;
 }

 if (change == TRUE)
 {
 row++;

 if (row > ROWS - 2)
 {
 if (reset_zero = TRUE)
 {
 row = 0;
 }

 else
 {
 row = 1;
 }
 }

 change = FALSE;
 }

147

 if (prgm_button())
 {
 select = TRUE;
 }

 sleep(0.5);
 }

 select = FALSE;
 change = FALSE;
 col = 1;

 if (row != 0)
 {
 while (select == FALSE)
 {
 if (type == OBSTACLE)
 {
 printf("oc%d", col);
 }

 else if (type == GOAL)
 {
 printf("gc%d", col);
 }

 else
 {
 printf("Sc%d", col);
 }

 if (view_button())
 {
 change = TRUE;
 }

 if (change == TRUE)
 {
 col++;

 if (col > COLS - 2)
 {
 col = 1;
 }

 change = FALSE;
 }

 if (prgm_button())
 {
 select = TRUE;

148

 if (type == GOAL)
 {
 reset_zero = TRUE;
 }
 }

 sleep(0.5);
 }
 }

 if (row != 0)
 {
 if (type == OBSTACLE)
 {
 AddObstacle(row, col);
 }

 else if (type == GOAL)
 {
 AddGoal(row, col);
 }

 else
 {
 gStartPosition[ROW] = row;
 gStartPosition[COL] = col;
 gCurrentPosition[ROW] = row;
 gCurrentPosition[COL] = col;
 row = 0;
 }
 }
 }

 return;

} // end GetPosition()

// Get starting heading.
void GetStartHeading(void)
{
 int select = FALSE;
 int change = FALSE;
 gHeading = NORTH;

 while (select == FALSE)
 {
 if (gHeading == NORTH)
 {
 printf("Hd N");
 }

149

 else if (gHeading == SOUTH)
 {
 printf("Hd S");
 }

 else if (gHeading == EAST)
 {
 printf("Hd E");
 }

 else
 {
 printf("Hd W");
 }

 if (view_button())
 {
 change = TRUE;
 }

 if (change == TRUE)
 {
 gHeading = (gHeading + 1) % 4;
 change = FALSE;
 }

 if (prgm_button())
 {
 select = TRUE;
 }

 sleep(0.25);
 }

 return;

} // end GetStartHeading()

150

/**/
/**** CARTOGRAPHER FUNCTIONS ****/
/**/
// Generate map with current data.
void GenerateMap(void)
{
 // Loop variables.
 int row, col, ob;

 // Clear map of prior data.
 for (row = 0; row < ROWS; row++)
 {
 for (col = 0; col < COLS; col++)
 {
 if ((row == 0) || (row == ROWS-1) ||
 (col == 0) || (col == COLS-1))
 {
 gGrid[row][col] = 1;
 }

 else
 {
 gGrid[row][col] = 0;
 }
 }
 }

 // Add obstacles to map.
 for (ob = 0; ob < gNumObstacles; ob++)
 UpdateMap(gObstacles[ob][ROW], gObstacles[ob][COL], OBSTACLE);

 // Add current robot location to map.
 UpdateMap(gCurrentPosition[ROW], gCurrentPosition[COL], START);

 return;

} // end GenerateMap()

// Update map with new information.
void UpdateMap(int row, int col, int identifier)
{
 if ((row > 0) && (row < ROWS - 1) &&
 (col > 0) && (col < COLS - 1) &&
 ((identifier >= 0) && (identifier <= 2)))
 {
 gGrid[row][col] = identifier;
 }

 return;

} // end UpdateMap()

151

/**/
/**** NAVIGATOR FUNCTIONS ****/
/**/
// Path planning using the wavefront algorithm.
// Returns number of steps to goal.
int CreatePath(int goal_num, int creation_flag)
{
 // Loop variables.
 int goal, row, col, facing;
 int step_position[2];

 // Monitor if a grid has been updated.
 int updates = TRUE;

 // Wavefront algorithm results.
 int num_steps = 0;

 #ifdef TRACE
 printf("InCP");
 beep();
 sleep(1.5);
 #endif

 // Generate clean map.
 GenerateMap();

 // Set grid for desired goal.
 SetGoal(goal_num, creation_flag);

 // Perform wavefront until no grid spaces are updated.
 updates = TRUE;

 while (updates == TRUE)
 {
 updates = FALSE;

 for (row = 1; row < ROWS-1; row++)
 {
 for (col = 1; col < COLS-1; col++)
 {
 if (gGrid[row][col] > 1)
 {
 if (gGrid[row-1][col] == 0)
 {
 gGrid[row-1][col] = gGrid[row][col] + 1;
 updates = TRUE;
 }

 if (gGrid[row][col+1] == 0)
 {
 gGrid[row][col+1] = gGrid[row][col] + 1;
 updates = TRUE;
 }

152

 if (gGrid[row+1][col] == 0)
 {
 gGrid[row+1][col] = gGrid[row][col] + 1;
 updates = TRUE;
 }

 if (gGrid[row][col-1] == 0)
 {
 gGrid[row][col-1] = gGrid[row][col] + 1;
 updates = TRUE;
 }
 }
 }
 }
 }

 gPath[0][ROW] = gCurrentPosition[ROW];
 gPath[0][COL] = gCurrentPosition[COL];
 num_steps = 0;

 // Ensure goal is reachable from current position.
 if (gGrid[gCurrentPosition[ROW]][gCurrentPosition[COL]] == 0)
 {
 printf("PERR");
 beep();
 beep();
 beep();
 sleep(2.0);

 return ERROR_NO_PATH;
 }

 step_position[ROW] = gCurrentPosition[ROW];
 step_position[COL] = gCurrentPosition[COL];

 while (gGrid[step_position[ROW]][step_position[COL]] !=
gGrid[gGoals[gCurrentGoal][ROW]][gGoals[gCurrentGoal][COL]])
 {
 num_steps++;
 facing = gHeading; // Start search in direction robot is facing
 // to reduce turns.

 while (1) // Loop exits when lower cost grid space is found.
 {
 if ((facing == SOUTH) &&
 (gGrid[step_position[ROW]-1][step_position[COL]] <
 gGrid[step_position[ROW]][step_position[COL]]) &&
 (gGrid[step_position[ROW]-1][step_position[COL]] > 1))
 {
 step_position[ROW] = step_position[ROW] - 1;
 break;
 }

153

 else if ((facing == EAST) &&
 (gGrid[step_position[ROW]][step_position[COL]+1] <
 gGrid[step_position[ROW]][step_position[COL]]) &&
 (gGrid[step_position[ROW]][step_position[COL]+1] > 1))
 {
 step_position[COL] = step_position[COL] + 1;
 break;
 }

 else if ((facing == NORTH) &&
 (gGrid[step_position[ROW]+1][step_position[COL]] <
 gGrid[step_position[ROW]][step_position[COL]]) &&
 (gGrid[step_position[ROW]+1][step_position[COL]] > 1))
 {
 step_position[ROW] = step_position[ROW] + 1;
 break;
 }

 else if ((facing == WEST) &&
 (gGrid[step_position[ROW]][step_position[COL]-1] <
 gGrid[step_position[ROW]][step_position[COL]]) &&
 (gGrid[step_position[ROW]][step_position[COL]-1] > 1))
 {
 step_position[COL] = step_position[COL] - 1;
 break;
 }

 // Check next direction.
 facing = (facing + 1) % 4;
 }

 gPath[num_steps][ROW] = step_position[ROW];
 gPath[num_steps][COL] = step_position[COL];
 }

 #ifdef TRACE
 printf("EcCP");
 beep();
 sleep(1.5);
 #endif

 return num_steps;

} // end CreatePath()

154

// Follow path to desired goal.
void FollowPath(int num_steps)
{
 int step, desired_facing;

 #ifdef DEBUG
 printf("Path");
 sleep(1.0);
 #endif

 for (step = 1; step <= num_steps; step++)
 {
 if (gPath[step][ROW] == gCurrentPosition[ROW] - 1)
 {
 desired_facing = NORTH;
 }

 else if (gPath[step][ROW] == gCurrentPosition[ROW] + 1)
 {
 desired_facing = SOUTH;
 }

 else if (gPath[step][COL] == gCurrentPosition[COL] + 1)
 {
 desired_facing = EAST;
 }

 else
 {
 desired_facing = WEST;
 }

 if (desired_facing == ((gHeading + 3) % 4))
 {
 TurnLeft();
 }

 else
 {
 while (gHeading != desired_facing)
 {
 TurnRight();
 }
 }

 MoveForward();

 #ifdef DEBUG
 // Display [Row, Column, Step]
 // Note: Step counts down when moving toward a goal;

 // up when moving toward Start.
 printf("%d%d%d", gCurrentPosition[ROW], gCurrentPosition[COL],
 gGrid[gPath[step][ROW]][gPath[step][COL]]);

155

 beep();
 sleep(0.5);
 #endif
 }

 return;

} // end FollowPath()

// Sets map to allow wavefront pathing to a single, desired goal.
// The flag variable determines if known goal positions are
// considered obstacles or passable. Default is as obstacle.
void SetGoal(int goal_num, int flag)
{
 int g;
 int marker = OBSTACLE;

 if (flag == SHORTEST_PATH)
 marker = 0;

 // All goals beside the one being sought are set per the flag.
 for (g = 0; g < gNumGoals; g++)
 {
 if (g == goal_num)
 UpdateMap(gGoals[g][ROW], gGoals[g][COL], GOAL);

 else
 UpdateMap(gGoals[g][ROW], gGoals[g][COL], marker);
 }

 gCurrentGoal = goal_num;

 #ifdef DEBUG
 printf("g%d", goal_num);
 sleep(1.0);
 #endif

 return;

} // end SetGoal()

// Find the goal closest to current location.
// Returns goal number of the closest goal.
int FindClosestGoal(void)
{
 int goal_num, g, steps;
 int min_steps = 999;

 #ifdef TRACE
 printf("InFG");
 beep();

156

 sleep(1.5);

 printf("nG %d", gNumGoals);
 beep();
 sleep(1.5);
 #endif

 if (gNumGoals == 0)
 {
 #ifdef TRACE
 printf("EcFG");
 beep();
 sleep(1.5);
 #endif

 return ERROR_NO_GOALS;
 }

 if (gNumGoals == 1)
 return 0;

 // Default; should no goals be reachable.
 goal_num = ERROR_NO_GOALS;

 for (g = 0; g < gNumGoals; g++)
 {
 steps = CreatePath(g, SHORTEST_PATH);

 if ((steps != ERROR_NO_PATH) &&
 (steps < min_steps))
 {
 min_steps = steps;
 goal_num = g;
 }
 }

 #ifdef TRACE
 printf("EcFG");
 beep();
 sleep(1.5);
 #endif

 return goal_num;

} // end FindClosestGoal()

157

// Add a goal to the goal list.
void AddGoal(int goal_row, int goal_col)
{
 int g;

 // Ensure maximum number of goals isn't exceeded.
 if (gNumGoals == MAX_GOALS)
 {
 printf("maxg");
 beep();
 beep();
 beep();
 sleep(2.0);

 return;
 }

 // Ensure goal coordinates are valid.
 if ((goal_row <= 0) || (goal_row > ROWS - 2) ||
 (goal_col <= 0) || (goal_col > COLS - 2))
 {
 return;
 }

 // Ensure goal doesn't already exist.
 for (g = 0; g < gNumGoals; g++)
 {
 if ((gGoals[g][ROW] == goal_row) &&
 (gGoals[g][COL] == goal_col))
 {
 return;
 }
 }

 // Enter new goal into goal list.
 gNumGoals++;

 gGoals[gNumGoals - 1][ROW] = goal_row;
 gGoals[gNumGoals - 1][COL] = goal_col;

 #ifdef DEBUG
 printf("g%d%d%d", gNumGoals - 1, goal_row, goal_col);
 tone(3500.0, 0.25);
 tone(5050.5, 0.25);
 sleep(2.0);
 #endif

 return;

} // end AddGoal()

158

// Remove goal from goal list.
void RemoveGoal(int goal_num)
{
 if (goal_num != gNumGoals - 1)
 {
 gGoals[goal_num][ROW] = gGoals[gNumGoals - 1][ROW];
 gGoals[goal_num][COL] = gGoals[gNumGoals - 1][COL];
 }

 gGoals[gNumGoals - 1][ROW] = 0;
 gGoals[gNumGoals - 1][COL] = 0;

 gNumGoals = gNumGoals - 1;

 return;

} // end RemoveGoal()

// Add obstacle to obstacle list.
void AddObstacle(int obstacle_row, int obstacle_col)
{
 int ob;

 // Ensure maximum number of obstacles isn't exceeded.
 if (gNumObstacles == MAX_OBSTACLES)
 {
 printf("maxo");
 beep();
 beep();
 beep();
 sleep(2.0);

 return;
 }

 // Ensure obstacle coordinates are valid.
 if ((obstacle_row <= 0) || (obstacle_row > ROWS - 2) ||
 (obstacle_col <= 0) || (obstacle_col > COLS - 2))
 {
 return;
 }

 // Ensure obstacle doesn't already exist.
 for (ob = 0; ob < gNumObstacles; ob++)
 {
 if ((gObstacles[ob][ROW] == obstacle_row) &&
 (gObstacles[ob][COL] == obstacle_col))
 {
 return;
 }
 }

159

 // Enter new obstacle into obstacle list.
 gNumObstacles++;

 gObstacles[gNumObstacles - 1][ROW] = obstacle_row;
 gObstacles[gNumObstacles - 1][COL] = obstacle_col;

 #ifdef DEBUG
 printf("o%d%d%d", gNumObstacles, obstacle_row, obstacle_col);
 sleep(2.0);
 #endif

 return;

} // end AddObstacle()

/**/
/**** PILOT FUNCTIONS ****/
/**/
// Move the robot forward.
void MoveForward(void)
{
 int ticks = GRID_LENGTH_TICKS;

 if (gHeading == NORTH)
 {
 if (gCurrentPosition[ROW] == 1)
 {
 return;
 }

 gCurrentPosition[ROW] = gCurrentPosition[ROW] - 1;
 }

 else if (gHeading == EAST)
 {
 if (gCurrentPosition[COL] == COLS - 2)
 {
 return;
 }

 gCurrentPosition[COL] = gCurrentPosition[COL] + 1;
 }

 else if (gHeading == SOUTH)
 {
 if (gCurrentPosition[ROW] == ROWS - 2)
 {
 return;
 }

 gCurrentPosition[ROW] = gCurrentPosition[ROW] + 1;
 }

160

 else
 {
 if (gCurrentPosition[COL] == 1)
 {
 return;
 }

 gCurrentPosition[COL] = gCurrentPosition[COL] - 1;
 }

 printf("fd");
 sleep(0.5);

 if (gLastDrive == REVERSE)
 ticks -= DRIVE_TICKS_CORRECTION;

 reset_encoder(DRIVE_ENCODER);
 gMovingForward = TRUE;
 motor(DRIVE_MOTOR, DRIVE_SPEED);
 while (read_encoder(DRIVE_ENCODER) < ticks);
 brake(DRIVE_MOTOR);

 gMovingForward = FALSE;
 gLastDrive = FORWARD;

 return;

} // end MoveForward()

// Back robot up to last position.
void BackUp(void)
{
 int ticks = 0;

 if (gHeading == NORTH)
 {
 gCurrentPosition[ROW] = gCurrentPosition[ROW] + 1;
 }

 else if (gHeading == EAST)
 {
 gCurrentPosition[COL] = gCurrentPosition[COL] - 1;
 }

 else if (gHeading == SOUTH)
 {
 gCurrentPosition[ROW] = gCurrentPosition[ROW] - 1;
 }

161

 else
 {
 gCurrentPosition[COL] = gCurrentPosition[COL] + 1;
 }

 #ifdef DEBUG
 printf("bu");
 sleep(1.0);
 #endif

 if (gLastDrive == FORWARD)
 ticks = DRIVE_TICKS_CORRECTION;

 motor(DRIVE_MOTOR, -DRIVE_SPEED);
 while (read_encoder(DRIVE_ENCODER) > ticks);
 brake(DRIVE_MOTOR);
 reset_encoder(DRIVE_ENCODER);

 gLastDrive = REVERSE;

 return;

} // end BackUp()

// Turn the robot left.
void TurnLeft(void)
{
 int ticks = TURN_LENGTH_TICKS;

 gHeading = (gHeading + 3) % 4;

 #ifdef DEBUG
 printf("tl");
 #endif

 if (gLastTurn == RIGHT)
 ticks -= TURN_TICKS_CORRECTION;

 reset_encoder(TURN_ENCODER);
 motor(TURN_MOTOR, TURN_SPEED);
 while (read_encoder(TURN_ENCODER) < ticks);
 brake(TURN_MOTOR);

 gLastTurn = LEFT;

 return;

} // end TurnLeft()

162

// Turn the robot right.
void TurnRight(void)
{
 int ticks = -TURN_LENGTH_TICKS;

 gHeading = (gHeading + 1) % 4;

 #ifdef DEBUG
 printf("tr");
 #endif

 if (gLastTurn == LEFT)
 ticks += TURN_TICKS_CORRECTION;

 reset_encoder(TURN_ENCODER);
 motor(TURN_MOTOR, -TURN_SPEED);
 while (read_encoder(TURN_ENCODER) > ticks);
 brake(TURN_MOTOR);

 gLastTurn = RIGHT;

 return;

} // end TurnRight()

// Capture target at current location.
void CaptureTarget(void)
{
 #ifdef DEBUG
 printf("cap");
 #endif

 motor(TRAP_MOTOR, TRAP_SPEED);
 sleep(TRAP_TIME);
 off(TRAP_MOTOR);

 gHaveTarget = TRUE;

 return;

} // end CaptureTarget()

// Release captured target.
void ReleaseTarget(void)
{
 #ifdef DEBUG
 printf("rel");
 #endif

 motor(TRAP_MOTOR, -TRAP_SPEED);
 sleep(TRAP_TIME);

163

 off(TRAP_MOTOR);

 return;

} // end ReleaseTarget()

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Problem Statement
	Purpose of the Project

	RELATED WORKS
	ARCHITECTURE
	Model
	Current Architecture
	Reactive paradigm software architecture
	Deliberative paradigm software architecture
	About LEGO hardware
	Hardware architecture
	Problems encountered with the current architecture

	Previous Architectures
	First architecture, “Buggy”
	Second architecture, “Seeker”
	Third architectures, “Mantis” and “Trap”
	Fourth architecture, “Balanced”

	RESULTS
	Test Run Results
	Classroom Application
	Lectures and robotics projects
	Classroom results

	Conclusion
	Future Work

	WORKS CITED
	APPENDIX A
	WAVEFRONT PROPAGATION ALGORITHM
	WAVEFRONT PROPAGATION ALGORITHM
	APPENDIX B
	DIFFERENTIAL GEARING
	DIFFERENTIAL GEARING
	APPENDIX C
	STUDENT ROBOTIC ASSIGNMENTS
	STUDENT ROBOTIC ASSIGNMENTS
	APPENDIX D
	SUMMARY OF STUDENT FEEDBACK FORMS
	SUMMARY OF STUDENT FEEDBACK FORMS
	Robotics Instruction Quesionnaire

	APPENDIX E
	HARDWARE BUILDING INSTRUCTIONS
	HARDWARE BUILDING INSTRUCTIONS
	APPENDIX F
	CODE FOR THE REACTIVE ROBOTIC ARCHITECTURE
	CODE FOR THE REACTIVE ROBOTIC ARCHITECTURE
	APPENDIX G
	CODE FOR THE DELIBERATIVE ROBOTIC ARCHITECTURE
	CODE FOR THE DELIBERATIVE ROBOTIC ARCHITECTURE

