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CHAPTER I 

INTRODUCTION 

Problem Statement 

Robotic platforms are being used to enhance the education of students from 

elementary school to graduate college courses. A growing population of inexpensive 

platforms is among these.1 Nevertheless, some people have viewed the capability of these 

inexpensive platforms as too limited to create anything but rudimentary robotic architectures 

(reactive control). The intent of this project is to show that the full potential of these 

platforms has yet to be explored; robotic architectures can be created from inexpensive 

platforms like LEGO Mindstorms and used for teaching a complex concept like path 

planning and navigation in robotics and artificial intelligence courses. But, before 

understanding the “how” of using these inexpensive platforms, it is important to understand 

“why” they have come to play such a large role. 

Weinberg and Yu [16] state that the reason for robotics success as an educational tool 

is three-fold. First, robots offer a unique learning experience by providing hands-on 

experience with an integrated system. Second, the cost of robotic platforms has dropped 

considerably over the last decade, making them affordable to schools with small budgets.2 

Third, the new platforms offer a “plug-and-play feel”. The latter has lessened the need for 

instructors and students to have a broad knowledge of how to design and integrate the 

                                                 
1 A broad range of applications can be examined in , , , , ,[ , . [2] [5] [7] [8] [10] 13] [14]
2 The LEGO Mindstorms Robotics Invention System – with over 700 LEGO pieces and the controller – can be 
bought for under $200.00 (US). 
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mechanical, electrical, and computational components of a robotic system. Thus, robotics is 

no longer restricted to large institutions, but available to others for a number of purposes.  

Another reason that robotics was limited in its application was a lack of a framework 

for insertion into the curriculum. With the Association for Computing Machinery (ACM) / 

Institute of Electrical and Electronics Engineers, Inc. (IEEE) Computing Curriculum 2001 

(CC2001) developing curricular guidelines for undergraduate programs in computing, this 

barrier has been breached [10]. Klassner and Anderson [10] believe that robotics projects can 

support at least seven of the 14 knowledge areas in the CC2001. They then pose the 

following criteria for a robotic platform to meet these criteria: it must support multiple 

sensors, have a modifiable chassis, support communication between robots and / or a 

personal computer, be programmable in several languages commonly used in computer 

science courses, and the robot platform requires a central processing unit (CPU) and enough 

random access memory (RAM) to support complex programming. Lastly, it must be 

affordable. The LEGO Mindstorms kit is strong in many of these areas. Its success in the 

hobby community has helped fill in the gaps where it is weak as an off-the-shelf product. 

In 1998, collaborating with the Massachusetts Institute of Technology (MIT), the 

LEGO Group released LEGO Mindstorms [4]. Mindstorms was a new product line that 

makes use of LEGO’s existing plastic bricks, motors, and gears and allows the user to 

automate a mechanical creation with a mobile programmable computer. Its computer, called 

the Robotic Command Explorer (RCX) (Figure 1, below), is based on a Hitachi H8 

microcontroller running at 16 MHz and with 32 KB of static random access memory (RAM) 

for firmware and programs. The LEGO product makes it simple to construct a mechanical 
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structure (Figure 2, below) through the use of very familiar LEGO bricks. Furthermore, the 

sensors and motors all have a standard interface that makes them easy to connect to the RCX 

and a graphical user interface provided by LEGO that simplifies the programming process. 

The graphical programming environment is intended to be simplistic and allows 

programming to be as easy as attaching two virtual LEGO code bricks together. Further, the 

platform has been so popular that a number of hobbyists and schools have created a variety 

of C, Java, LISP, and Visual Basic programming environments to support the LEGO RCX 

and a growing interest in robotics. These environments have also added capabilities beyond 

the LEGO graphical programming tool like floating point variables, multidimensional arrays, 

structures, and pointers [3],[6]. 

  

Figure 1: LEGO Mindstorms RCX Figure 2: Example of a Robotic Mechanical Structure 

Since the 1990s, robots using LEGO Mindstorms have appeared as educational tools 

for elementary, high school, and college students around the world [4]. The approach and 

purpose of the projects differ, but the emphasis remains to capture students’ interest in the 

subject matter by providing the ability to logically devise, create, and test their ideas on a 

platform capable of interacting with the real world. The success of these platforms and their 
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effect on students can be seen by their use in international robotics competitions at both the 

college and high school levels.3 Furthermore, robotics in education has grown enough to 

warrant its own forum in professional conferences and publications of organizations like the 

American Association for Artificial Intelligence (AAAI) and IEEE.4 While the popularity of 

these inexpensive platforms has proven their usefulness, there is still some argument that the 

utility is very limited to robotics education and research due to the reduced processing 

capability, memory capacity, and sensor limitations. In her book, Robin Murphy specifically 

states, “Lego Mindstorms….robots can be used for the first six chapters [on reactive 

paradigm robotics], but their current programming interface and sensor limitations interfere 

with using those robots for the more advanced material [such as deliberative paradigm 

robotics using path planning and map making].” [12] While it is true that the limited 

resources of the inexpensive platforms do not support the spectrum of current robotic 

architectures as well as the more expensive robotics platforms specifically intended for 

robotics research, a platform like LEGO Mindstorms can still be used. 

The reactive paradigm discussed above is one of three robotic paradigms in current 

robotics theory. The other two are deliberative and hybrid. An architecture using a pure 

reactive paradigm tightly couples sensor input and action. The robot does not plan nor retain 

world knowledge; it simply reacts to whatever its sensors tell it at that moment. Reactive 

architectures are best applied to dynamic environments because they do not derive a specific 

 
3 The KISS Institute for Practical Robotics Botball and RoboCup tournaments, for instance. 
4 See the 2001 and 2004 AAAI Spring Symposium on Robotics in Education conference notes and IEEE 
Robotics & Automation Magazine. vol. 10, no. 2. June 2003 and vol. 10, no. 3, September 2003 for IEEE 
special issues on robotics in education. 
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control plan. Conversely, they have difficulty completing specified goals. This is the 

architecture for which the inexpensive platforms are known, as a strong coupling of sense 

and reaction does not require a lot of memory or processing power. An architecture based on 

a pure deliberative paradigm maintains world knowledge, gathers input from its sensors and 

plans its next move based upon what it knows about the world around it. The storage 

requirements for world knowledge and computing resources required for planning algorithms 

make this approach much more processor and memory intensive in most cases. However, it 

tends to be much more efficient at completing goals than the reactive architecture when the 

environment is static. It is less efficient in a dynamic environment that forces frequent 

replanning. A hybrid paradigm refers to an architecture using a combination of reactive and 

deliberative to best achieve the task at hand [1],[12]. 

 
Purpose of the Project 

This project demonstrates that an inexpensive platform is capable of being used to 

teach a deliberative robotic control that includes navigation and planning. Navigation 

incorporates determining a goal location, planning a path to get there, maintaining knowledge 

of where the robot has been, and maintaining present location within the world representation 

[12]. Planning involves taking knowledge that the robot has acquired and using it to develop 

a sequence of actions that achieve a goal [15]. To enable a more direct compare-and-contrast 

of a deliberative architecture’s performance versus a reactive architecture’s performance, two 

robots were developed. The two LEGO Mindstorms robots were built using standard pieces 

with the exact same physical properties. One construct housed an RCX with a deliberative 

software architecture, the other and RCX with reactive architecture programming. 
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Once development and testing of the two platforms was complete, the deliberative 

robot design was used to teach robotics concepts of planning and navigation in an upper-

division class on artificial intelligence. To maximize the applicability of the results of this 

project to Southern Illinois University Edwardsville and other universities, the project makes 

use of the LEGO Mindstorms set, a commercially available suite of LEGO rotation, light, 

and touch sensors, and C-like programming environments that can be obtained by 

educational institutions free of charge. 
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CHAPTER II 

RELATED WORKS 

In the article, “Mobile Robot Labs,” by Lloyd Greenwald and Joseph Kopena [8], the 

RCX and Handy Board5 are both being used to examine how far inexpensive robotic 

technology can be pushed for teaching more advanced artificial intelligence and robotics 

concepts. Similar to my project, advanced AI techniques are being used such as map-based 

path planning. Further, deductive reckoning is the approach being taken for localization. 

Interactive C (IC) is also being used as the software development platform. Unlike this 

project, other advanced techniques are being explored – such as Bayesian representation, 

resource-bounded reasoning, and real-time control. The Handy Board and third-party sensors 

are the primary focus and a website reference is given for substituting the LEGO RCX for the 

Handy Board. However, third-party sensors are still required. 

“6.836 Final Project: Evolution in the Micro-Sense: An Autonomous Learning 

Robot,” by Chuang-Hue Moh [11], is another project that explores ways to expand the usage 

of low-cost platforms for non-traditional, more advanced purposes. Specifically, it examines 

the use of genetic algorithms (GAs) on a RCX platform to enable the robot to learn. Besides 

the use of GAs, the project also differs from mine through its use of a reactive architecture 

for motion behavior, not deliberative path planning and navigation. 

 
5 The Handy Board is an open platform microcontroller system. It is capable of running four motors and has 
inputs for 16 sensors (analog and digital). More information may be found at http://handyboard.com. 
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Dr. Dean Hougen’s “Hybrid Deliberative/Reactive Systems” [9] is an undergraduate 

student project for developing hybrid robotic architectures. Students are requested to design, 

build, program, and demonstrate a robot that efficiently acquires a target and returns it to the 

robot base station. The robot is given some a priori data and unknowns exist. This is very 

similar to the deliberative robot in my project and the implementation plans for applying the 

results of this project to an introductory robotics lesson. In addition, the project uses the RCX 

and IC for software. Unlike my project, this project makes use of the Handy Board, 

potentiometers, photoresistors, and other non-standard LEGO components. Again, my 

project focuses strictly on the LEGO RCX brick and standard LEGO building components. 

Each of these projects further demonstrates the educational community’s interest in 

exploring just how far inexpensive platforms can go. However, a number of projects turn to 

the Handy Board due to the LEGO RCXs limitations in memory and sensor ports. But, the 

RCX remains the easiest platform to use for students and instructors not desiring to delve 

into the technicalities of sensors and soldering based upon its plug-and-play ports. It’s for 

this reason that this project is unique. This project seeks to push the LEGO RCX and 

standard LEGO components as far as they can go. The goal is to understand what the system 

can do and then incorporate what is learned into the curriculum so that students can use the 

platform to continue their education beyond the platform’s apparent current means. 
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CHAPTER III 

ARCHITECTURE 

Model 

To demonstrate the deliberative robot’s ability to navigate and plan, we needed a 

goal. Animal behavior provided a template for the design of both of the robots and something 

for comparison of the results [1]. The robots for this project were modeled after a foraging 

animal. The robots’ purpose became a fetch and retrieve mission. The robots’ goal was to 

gather as many targets as efficiently as possible and return them to the starting area. 

Efficiency, in this case, emphasizes timeliness in completing the task successfully. It was 

also necessary for the robot to find its way around obstacles in its environment. From this 

concept of the robots, their niche – an arena containing food and obstacles – was also 

developed. 

 
Current Architecture 

To model the robots as foraging animals that could collect an item and return it to a 

specific position, the robots required mobility, the ability to detect targets and obstacles, and 

the ability to find their way back to the start location. Implementing the two different robot 

paradigms – reactive and deliberative – required two very different approaches to logic 

within the software. As mentioned previously, the hardware design was constructed to 

support both of these software architectures. A number of software revisions and different 

hardware architectures were developed over the course of the project and they are explained 
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here so that the reader may gain an understanding of the strengths and weaknesses of 

different models for their own usage. 

 
Reactive paradigm software architecture 
 

Five distinct phases emerged while designing the software for the reactive robotic 

paradigm – finding a goal item (a target), acquiring it, bringing the target back to a set 

location, releasing the target, and avoiding any obstacles encountered while executing the 

other behaviors. To detail the transition between these phases, a Finite State Acceptor (FSA) 

Diagram was developed (See Figure 3, below, and associated Table I, below). Note that the 

reactive paradigm robot does not have a specific end state. Once it successfully returns a 

target to the designated location, it goes back out and searches for another. Each of these 

phases was coded as a separate behavior. The interaction between these behaviors is shown 

as a Suppression Arbitration Network (SAN) (Figure 4, below). What the SAN illustrates is 

that a behavior with a higher priority overrides, or suppresses, the output of the behaviors 

below it. This is done without the lower priority behaviors knowing that their output is being 

suppressed. Mechanically, none of the behaviors directly control any of the robots sensors or 

effectors. An independent process acts as arbitrator. It reads the sensor inputs and makes 

them available to the other processes. The behavior processes set flag variables stating their 

desired output. The arbitrator then sets the highest priority behavior with a desired output to 

become the robot output – using motors, reset encoders, and switching state on internal state 

variables. 

The reactive paradigm robot maintains no world knowledge. It uses a direct SENSE-

ACT approach [1]. When the robot first starts, it records the average value of the ambient 
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light source and a target light source. Values are maintained as a percentage (0 – 100) with 

100 being the brightest light source. Raw sensor values could not be used, as the readings 

were unstable with the default firmware. The robot begins with no knowledge of its location 

within the arena and retains no data about what it has sensed or past actions. The one 

exception to this is one internal state variable that stores the position of the target trap arm 

(up or down). The reactive software employs the use of the timer function in the RCX to 

generate random numbers that determine the robot’s direction and amount of movement. 

This prevents the robot from establishing a pattern in corners and other symmetrical areas, 

which may lead to the robot becoming stuck in that area. If the robot has no target, it exhibits 

a foraging behavior and randomly moves about the arena. If the light sensor detects a target 

while foraging, the robot changes its behavior to acquiring the target and moves directly 

toward the lit target. If the light level falls back below a threshold determined to be a target, 

then the robot does a quick pan by turning to the left and right. If the light is seen again, the 

robot again moves straight forward. If the light is not seen during the pan, then the robot 

resumes the foraging behavior. When the robot senses that the target light level is very high, 

indicating a high-probability that the lit target is in the target trap, the robot lowers the trap 

arm. This completes the acquire behavior. The return behavior then searches for the place to 

return to using a Marco-Polo algorithm. The robot emits an infrared signal, “Marco.” If a 

second RCX at the return location – referred to as “Home” – detects the Marco signal, it 

emits a signal back to the robot, “Polo.” If the robot detects the Polo signal, it assumes that it 

is facing the return location and moves forward. This behavior repeats until the robot no 

longer receives the Polo signal or it impacts Home. If the robot does not receive the Polo 
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signal, it randomly turns and moves about, resending the Marco signal until it again receives 

Polo. This approach physically drives the robot directly into Home. However, the Home 

RCX is fitted with a bumper to detect the robot’s impact and emits an “At Home” signal 

when it occurs. The robot releases the target upon receiving an At Home signal by backing 

up, nudging forward to ensure that the target is not against the trap arm, and lifting the trap 

arm. Before the release behavior completes, it then turns the robot around about 180 degrees 

to allow a human time to retrieve the released target and prevent the robot from trying to 

recapture the same target. The robot then exhibits the forage behavior once again. If the robot 

impacts an obstacle, causing the touch sensor to be depressed, the avoid obstacle behavior 

takes control. When an obstacle is impacted, the robot backs away slightly from it and then 

turns a random direction and random amount between approximately 30 and 90 degrees. 

The internal state variable that monitors the target trap arm is used to prevent the 

return home and release target behaviors from assuming control when inappropriate. While a 

constant check of target light level might have been used, it was unreliable as the target’s 

light level fluctuated too rapidly due to battery problems (See “Problems encountered with 

the current architecture”, below). 
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Figure 3: Finite State Acceptor Diagram 
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 Table I: Finite State Acceptor Diagram 

δ Q input δ (q, input) 
 Home have-target release-target 
 Home find-target forage 
 Home other home 
 Forage target-found acquire-target 
 Forage forage-obstacle-found avoid-obstacle 
 Forage no-target-found forage 
 acquire-target target-gotten return-home 
 avoid-obstacle forage-obstacle-avoided forage 
 avoid-obstacle return-obstacle-avoided return-home 
 avoid-obstacle another-obstacle-found avoid-obstacle 
 return-to-home at-home home 
 return-to-home return-obstacle-found avoid- obstacle 
 return-to-home not-at-home return-to-home 
 avoid-return-obstacle return-obstacle-avoided return-to-home 
 release-target target-released home 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Suppression Arbitration Network 
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The reactive paradigm software is programmed using Dave Baum’s Not Quite C 

(NQC) version 2.5 R1. It is a C-like programming language that uses the LEGO Mindstorms 

firmware [3]. The language was originally used based upon availability and documentation at 

the start of the project. Due to limited program space, the programs for both software 

architectures were ported to Interactive C. However, unexplained, erratic light sensor 

readings were encountered with the reactive architecture software using IC. Thus, the final 

version of the reactive robotic software was built using NQC. A copy of the reactive robotic 

code may be found in Appendix F. 

 
Deliberative paradigm software architecture 
 

The deliberative robotic paradigm software is very functionally oriented. There are 

two main processes that run concurrently – one that goal searches and retrieves the goal 

targets and the other that looks for unknown targets and obstacles that cause plan failure. The 

Retrieve Goals process uses functions that are sectioned by purpose into initialization, 

cartographer, navigator, and pilot. The first, the initialization functions, calibrate the ambient 

and target light levels (similar to the reactive design). For improved accuracy, the raw light 

values were used, giving a range between 100 – 1000 with the lower values normally 

indicating a brighter light source. The initialization functions also receive user input to build 

an a priori6 map, including known targets, known obstacles, and robot starting position and 

heading. The cartographer functions build and maintain the robot’s world map – a grid stored 

as a two-dimensional array. The navigator functions build the robot’s plan for capturing the 

 
6 A priori: Information known independent of experience. 
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known targets. It uses a wavefront algorithm (see Appendix A) to generate a path. The pilot 

functions are the formal motor output functions that make the robot interact with the physical 

world. The robot is programmed to move horizontally and vertically. It changes direction by 

turning in place. The robot also possesses a target trap arm – which can be raised and 

lowered – that prevents a target from exiting the trap when the robot turns or backs up. 

The deliberative paradigm robot uses a cyclic SENSE-PLAN-ACT approach [1]. The 

robot uses arrays to store representation of its world – the arena, the known obstacles, and the 

known targets. The a priori information is used to develop the robot’s initial plan to move 

from its current location to the nearest goal. The plan is stored as an array of successive grid 

coordinates through which the robot should travel. As the robot progresses through the plan, 

it senses its environment through the touch sensor connected to a front bumper and the 

forward-looking light sensor for an indication of plan failure. If either indicates an object is 

present where none is expected, the robot backs up to the grid it previously occupied and the 

current plan is scraped; knowledge of obstacles and goals is then updated as appropriate. The 

robot then rebuilds the map and creates a new plan from its current position. 

Object information is placed onto the grid each time a map is built. The map grid 

starts as an empty 2-dimensional array. The hard coded edge obstacles (arena boundaries) are 

placed into the grid as the other spaces are cleared. Then, the program traverses an obstacle 

location array and inserts the known obstacles onto the grid. The robot’s heading and 

position are maintained in variables. If the robot is using the path-planning algorithm to 

determine the closest target, targets are represented as empty spaces. This prevents targets 

from becoming unreachable if located behind other targets in a corridor. However, when the 
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robot plans a path to a specific target, the other targets are represented as obstacles during the 

path-planning process to prevent the robot from running through their grid space and 

possibly knocking them out of the way. 

Once the map is built, the robot uses a wavefront algorithm to find the closest known 

target (target priority is based upon proximity to the robot). The robot finds the closest target 

by propagating the wave throughout the arena and then evaluating the value of the space 

occupied by the target in question. It does this for each known target and the closest target 

(the one with the lowest value) is maintained as the current closest target. To conserve 

memory, the grid values resulting from the wavefront propagations are not saved. Thus, once 

the closest target is found, the wavefront algorithm is run again for just that target. Then, a 

path generator follows the wave propagation from the robot to the target, saving the grid 

coordinates of each step. Once a path is generated, the robot follows the path. The robot 

maintains its current heading as it advances. To execute each step of the plan it first 

determines if it needs to turn left or right; using its turn rotation sensor to execute the motion 

as required. It then moves straight to the next coordinate in the plan using its linear rotation 

sensor to determine proper distance.7 To account for gear slop and improve localization, the 

robot maintains which direction it last moved. It then adjusts the threshold values for its 

rotation sensors accordingly. Once the robot reaches a target location, it stops and captures 

the target by dropping the target trap arm. The wavefront algorithm is then used again to plan 

a path back to Home. The robot follows the plan Home in a similar fashion. Once Home, the 

 
7 See Hardware architecture, below, for calculation of rotation sensor ticks required for linear and turning 
motion. 
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robot releases the target, turns around, and plans a path to the next nearest target, if any. If no 

known targets remain, the robot stops. 

The robot is capable of seeking multiple targets at once. But, since the wavefront 

algorithm can only handle one goal at a time, objects on the grid have to be manipulated to 

support whether the algorithm is being used to find the closest target or make a path to a 

target. Storing object positions independent of the grid best supports this approach by 

allowing positions of specific objects to be easily modified or added. As mentioned above, 

when determining the closest target, the robot sets all other targets besides the one it is 

looking at to empty spaces. Given that the robot maintains no goal knowledge except 

location until the goal is determined to be the closest, it does not matter if the other targets 

are set as a space or an obstacle when searching each target, as long as a contingency exists if 

the robot cannot reach the target – a condition that’s possible if there is a target in the only 

path between the robot and the current target. If the target cannot be reached, one can assume 

it either cannot be reached at all or there is a closer target. However, if additional target data 

is kept to improve performance when finding the next closest target, then the other targets 

should be set to spaces to allow a truer measure of target distance from the robot and to 

alleviate one target blocking another. 

Once a target is captured, the robot plans a path Home. This is done because the robot 

may have had a plan failure (such as finding an obstacle in its original path) prior to 

acquiring the current target and following the existing path back may not represent the 

shortest path from the robot’s current location to Home. For the purpose of planning a path to 

Home, all remaining target locations are marked as obstacles. This is necessary since the 
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robot cannot sense other targets when one is in the target trap. Thus, a plan that did not 

consider existing targets as obstacles may cause the robot to pass through another known 

target’s location and knock it out of position, causing the robot’s plan to fail when it returned 

to capture this rogue target. 

A plan under execution can fail in three ways – an unknown obstacle is encountered, 

an unknown target is found, or what was given as a known target is not there. For the first, 

the robot ceases execution of the current plan when the bumper detects an obstacle. The Plan 

Failure process then moves the robot back to the last occupied position and updates the 

appropriate obstacle array. The Retrieve Goals process is then restarted, which recalculates 

the closest target using the new data as the new obstacle may require a much longer path to 

what was the closest target. The robot then automatically generates a plan from its current 

location to whatever grid is determined to contain the closest target. Next, the robot executes 

the new plan. The robot does the same for unknown targets except the robot can only detect 

the presence of unknown targets while it is traveling to a target. If the robot has captured a 

target, the captured target blocks the robot’s light sensor that it uses to detect targets. If the 

robot finds that no target exists where it expects, it removes the target from its goal array. 

Then, it determines the closest remaining target from its current location and plans a path to 

it. If no further known targets exist, it stops. 

A number of steps were taken to make the deliberative robotic paradigm program 

easier to use and understand. First, it is programmed using Interactive C (IC) version 4.2. IC 

4.2 was chosen because the C language is commonly used in a majority of courses at SIUE 

and other universities. Second, it replaces the LEGO Mindstorms firmware with one that has 
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a much smaller memory footprint. The IC4 firmware provides a lot more memory space for 

storing grid, obstacle, and target information, removing the need to resort to bitwise encoding 

for a small arena. NQC resides on top of the existing LEGO firmware so does not offer these 

benefits. Third, to ease the burden of maintaining localization, the robot was limited to 

ninety-degree turns. No diagonal movement between grid spaces was allowed. Further, the 

array contents represented grid vertices. Thus, obstacles and targets were assumed to occupy 

the whole grid space. A copy of the deliberative robotic code may be found in Appendix G. 

 
About LEGO hardware 
 

The commercially available LEGO kits provide a number of motors and sensors for a 

variety of different purposes. The current LEGO Robotics Invention System (RIS) includes 9 

Volt (V) geared DC motors. The RCX output ports, strictly digital devices, control the speed 

of these motors through Pulse Width Modulation (PWM). This means that the RCX always 

outputs the maximum voltage but does so in pulses. The RCX sends these pulses every 8 

milliseconds (ms). The length of the pulse over the 8 ms determines the duty-cycle. Thus, if 

the pulse were 3 ms long, the duty-cycle would be 37.5% (3 ms / 8 ms = 0.375). The lowest 

power is 1 ms in length while the highest power setting lasts the entire 8 ms. The longer the 

pulse, the faster the motor shaft spins. The light sensor contains both a red Light Emitting 

Diode (LED) that emits a visible red light and a clear phototransistor/receiver which allows 

more current from the RCX to flow through as a stronger light source is detected. The light 

sensors are not very efficient and drastically different readings can be obtained from two 

light sensors under the same lighting conditions or from the same sensor under even slightly 

different ambient lighting conditions. Note that the distance the sensor is from the target 
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surface can influence the latter as well. The light sensors are best used to detect a distinct 

difference between a very dark object and a very light object; though a third mid-range color 

can be detected if ambient lighting conditions are supportive. The rotation sensors measure 

the amount of rotation on an axle. When the axle within the rotation sensor moves, it causes 

it to pass through four different states, each generating a tick and enabling the RCX to tell 

that the rotation sensor has been moved and in which direction. A full rotation of the axle 

causes the rotation sensor to pass through each of these four states four times. Thus, each full 

axle rotation will yield a count of 16 ticks. Gearing up from the wheel axle to the axle that 

the rotation sensor is mounted on will improve the sensitivity of the sensor feedback by 

increasing the number of revolutions of the rotation sensor axle for each rotation of the wheel 

axle. However, the motor tends to have an average loaded angular velocity of 250 rotations 

per minute (rpm) (350 rpm unloaded) and it was found that, using the standard RCX 

firmware, the rotation sensors begin loosing accuracy below 50 rpm and above 300 rpm. 

Thus, it may be best to directly mount the rotation sensor to the motor axle and gear down to 

the wheel axle. Other firmware may yield different accuracies depending upon sample rates. 

The touch sensors are simple on / off switches. When the sensor is depressed, current flows. 

When released, the circuit is broken [3],[6]. 

 
Hardware architecture 
 

The project hardware has two main components, the arena in which the robot moves 

and the physical robot construct. The arena was designed around the robot and the goals of 

the project. But, the robot itself underwent many modifications. As a result, certain aspects of 

the arena’s design drove changes to the robot. 
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The arena had to provide enough space to support the project requirements but be 

portable enough to allow for easy teardown. The arena was in a multifunctional room used by 

other students and could not be left standing at all times. When erected, it had to fit on the 

available table space, as floor space was limited. Further, the most convenient, continuous 

surface to use was a 4’ x 8’ x ¼” sheet of board with a melamine coating. The melamine 

coating also provides good traction to most LEGO rubber wheels. However, the laminate 

tends to come off, especially if tape is used repeatedly on the surface. This led to 

irregularities on the surface, which did occasionally hinder the robot’s navigation, though not 

too significantly. They would likely cause a greater problem for robots using light sensors 

that face downward. This board size also met the need for most grid sizes approximations 

that the software could support.   

Planning for the deliberative robot to use grid representation, initial estimates of the 

robot’s turning requirements determined that a 10” x 10” square would work best. The 

original language of choice was NQC. With the limited memory program memory available, 

the arena size was restricted to a 4 x 6 grid. It should be noted that the arena included a 

border of obstacles in the robot’s memory. Thus, internally, the robot stored a 6 x 8 grid. This 

made the use of the wavefront algorithm easier. When the language was transitioned to IC 4, 

it was unknown just how much memory would be freed. So, the original 4 x 6 physical grid 

remained. This grid size proved to be adequate when considering the 5 – 10 second 

processing time required to propagate the path-planning wave and the time required to 

actually move the robot from one end to the other, due to the slower speed caused by gearing 

the wheels down from the motor. This grid setup provided enough space to create open areas 
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and boxed canyons and was small enough that only a few obstacles are required to make a 

one grid-space-wide opening. 

The obstacles, being physical in nature, were built as required to ensure that the 

robot’s sensor was impacted and that the obstacle would interfere as little as possible with the 

other robot functions. Since the reactive robot did not have an internal representation of walls 

around the arena, a physical one was built using Polyvinyl Chloride (PVC) piping. With the 

robot’s target trap, its bumpers had to be built up, above the height of the targets, to prevent 

the robot from mistaking a target for an obstacle. The obstacle wall was then built to stand a 

couple of inches above the arena floor. 

The unique bumper design on the robot created a number of problems for a 

freestanding obstacle within the arena. To mimic the approach that the border obstacles took, 

a mushroom-shaped obstacle was required, one with a central column and a cylinder lying 

flat on top. However, none could be devised with the materials available that were also heavy 

enough to withstand a robot impact and not move or topple. To compensate, the robot’s 

bumper was extended forward, beyond the trap arm, so that it would trigger when the robot 

ran into a vertical wall obstacle. These wall obstacles were constructed of cardboard boxes 

filled with rocks and brick to prevent them from moving when the robot impacted them. The 

obstacles were designed to be only 5” x 5”, 10” tall, and sit in the middle of a grid space. 

This provided some allowance for the deliberative robot to be off center during its travels. 

The ramification of this design was that it allowed the robot to fit between two obstacles in 

adjacent grid spaces, especially diagonally. So, for runs involving the reactive robot, the 

obstacles were placed on their side to cover a 5” x 10” portion of the grid space. Being hand-
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constructed, the obstacles had tape on the outside to hold the seams together. Further, 

because the boxes were made from much larger cardboard boxes, there were odd bows and 

creases in the cardboard sides. The tape and irregularities on the obstacle surfaces routinely 

caused problems for the reactive robot as it became stuck when its bumper would not 

properly trigger. Revisions to the bumper alleviate most of these errors. The deliberative 

robot, typically staying on course and only hitting the obstacles dead center, did not suffer 

from these same problems. An example of the arena (with robot and targets) is shown in 

Figure 5, below. 

 

Figure 5: Arena Example 

 

The robot’s targets (see Figure 6, below) were LEGO pieces with a square base and 

round stalk rising up about 1 ½”. A 12 V lamp was placed on the top of the stalk and two 

alkaline 12V batteries were placed in the square base. The 12 V lamp provided a very bright 

light source for the robot to detect and enabled it to be detected from 20” to 30” away with 

fresh batteries. The problem was finding a lamp and battery combination that would keep the 
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lamp well lit over long periods of a few hours. While many batteries can provide a lot of 

milliamps well in excess of the power requirements for the lamp, they can only do so for 

short periods at a time. After which, the light quickly dims and the battery is unusable for an 

hour or so. The best-lit target that could be developed used a 12 V lamp and two 12 V 

batteries in parallel. Placing the batteries in parallel doubles the current rather than the 

voltage. Using this configuration, the target light source remained usable for about an hour 

with minimal reduction in the luminescence of the lamp. However, the falloff at the time 

when the batteries did cease to provide enough power was dramatic. As the robot calibrated 

to the target light source, it was important to ensure that all targets were approximately the 

same luminescence. If the target used for calibration is too bright, the robot fails to properly 

capture a dimly lit target, thinking the source to be further out. Conversely, if a dim light 

source is used to calibrate, then the robot closes the target trap too soon, missing the target 

ahead. These problems only arise with the reactive robotic architecture. The deliberative 

architecture moves the robot to where it believes the center of the target grid space is located. 

It does not use the light to guide itself toward the target; it only checks if the light is actually 

present in the trap when it arrives. 

 

Figure 6: Lit Target 
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As mentioned previously, the robot hardware architecture is designed to support both 

the deliberative and reactive software architectures. However, the deliberative architecture 

levies much more stringent requirements to ensure successful localization. Therefore, the 

majority of the hardware architecture was designed with the deliberative robotic paradigm in 

mind. 

 

Figure 7: “Diane / Rea”, The Current Architecture 

 

The robot’s physical configuration (see Figure 7, above) is designed around its gear 

train. A dual-differential system (see Appendix B) is used to ensure that the wheels travel at 

equal velocities. Two motors are used, each connected to one of the differential shells. One 

motor provides power for driving and the other for turning. By turning on one motor and 

locking the other, it could be asserted that the wheels were rotating at the same velocity for 

forward and reverse movement, or equal speed and opposite direction for turning. This 
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system allows a single axle to be used for both driving and turning. With a centrally mounted 

axle, it allows the robot to turn in place. Additionally, by turning on both motors at the same 

time, a turn with a turning radius could be generated, if desired. 

Rotation sensors were required to provide deductive reckoning localization. The 

LEGO motors were always set to maximum speed, as they do not provide enough power to 

move a robot laden with the weight of an RCX unless a top speed, or near top speed, setting 

is used. To avoid loosing accuracy on the rotation sensors by exceeding their angular velocity 

maximum, they were geared directly to the motors with a 1:1 ratio. To gain more granularity 

in the rotation sensor ticks, the axle was geared down from the motor to a 1:6 ratio. With 16 

ticks per rotation sensor rotation, this provided 96 ticks per wheel axle rotation. This meant 

that every tick equated to only 3.75° or, given a wheel circumference of about 95.5 mm, 1 

mm traveled. While this provided much improved accuracy and torque to handle the loads, it 

also caused the robot to move much slower. 

When constructing the robot, a balanced design was created with motors on each side 

of the body and the RCX positioned to help the robot rest on its skid plate in the back. 

Further, the wheels were enclosed within the frame structure to ensure that the axle was 

supported on both sides of the wheel. This design helped to avoid any unnecessary tilt or 

motion that would lead to immeasurable errors. In addition, the compact, balanced design 

made it easier for the robot to turn as the load was balanced both forward and aft of the 

turning axle. 

The target trap was designed around the targets. The light sensor is placed at the 

optimal height to receive maximum luminescence from the target lamps. The width of the 
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trap is twice the width of the target stalk, allowing some room for error when trapping but 

forcing the lamp to remain in the light sensor’s field of view. A trap arm was used to ensure 

that the target did not slide out when the robot backed up or turned. To maintain the balanced 

design, a third motor for the trap was mounted center on top of the robot. Rubber bands and 

pulleys were used to transfer motion from the trap motor to the arm. This allowed a timing 

function to be used to control the trap arm without having to resort to a sensor to determine 

when the arm was in place. The time was purposely set a little long. When the arm was in 

position, the rubber bands slipped on the pulleys. Unfortunately, the trap system obscured the 

RCXs IR port, which sometimes made the robot miss an IR signal from the Home RCX. It 

also added difficulty to the creation of an obstacle bumper system. 

As stated previously, the bumper on the robot was designed to react to high obstacles 

only. As a result, tall whiskers were placed on the robot. They were stiff enough to allow the 

touch sensor to note the impacts but flexible enough that the robot’s movement was not 

altered grievously by the impact. It should also be noted that the robot only had a bumper in 

the front. Most rearward movement was very short distances and mostly into space from 

which the robot just came. By removing the rear bumper, structural and code complexity 

were reduced with minimal loss to operational capability. This enabled more processing time 

for the other sensors. 

Four sensors are required for the robot. A touch sensor is required to monitor the 

bumper discussed above. Two rotation sensors monitor the linear and turning motions and 

each required their own port. A port is also required for a light sensor to detect targets. With 

only three ports on the RCX, multiple sensors on the robot were ganged together on a single 
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port. Because of the nature of how ticks are read, it does not appear possible to gang two 

rotation sensors. It is even less feasible to gang a rotation sensor and light sensor. However, a 

light sensor and touch sensor can easily be ganged and it is not too difficult to tell which 

sensor input is being provided. When a touch sensor ganged with a light sensor is pressed, 

the RCX (reading the sensor input as a light sensor) registers an extreme value indicating a 

very bright source. For raw values, it is typically impossible to get the light sensor itself to 

read such a low value, even with a bright light source shining directly into the light sensor. 

However, if the light sensor is read as a percentage, the conversion from raw value to 

percentage enables a very bright source to register as 100% - making it difficult to 

distinguish between a bright light source and touch sensor impact. To prevent the target lamp 

from registering as 100%, the trap was modified to maintain some distance from the light 

sensor. Even with brand new batteries, the lamp only registers in the low-90s. 

Detailed instructions on how to build the LEGO robot can be found in Appendix E. 

 
Problems encountered with the current architecture 
 

The most significant problems encountered while testing the robots was 

environmental hardware related. The issue was maintaining consistent lighting from the 

targets and trying to maintain the light level for any usable period of time. As mentioned 

above, the 12V, dual-battery system provided much better results but it too gave out, often at 

very inconvenient times. This issue plagued both design paradigms. The other problems are 

paradigm related. 

The most troublesome part of the reactive robotic paradigm was the use of IR 

messaging. First, IR messages from Home were often misinterpreted because of the 
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reflection of the signal around the room or it was missed entirely. The later is expected to be 

a result of both the trap motor mounted on top blocking some of the signal and the 

positioning of the IR emitter and detectors within the IR port itself. The second problem was 

trying to properly time the receipt of the IR messages within a multithreaded environment. 

Wait delays and loop sizes all had a factor and numerous while statements had to include an 

IR message check in the Boolean expression to ensure that a message was not missed. 

The one issue with the deliberative robot was localization. It was typically successful 

on single runs to the target and back. It was even successful going 1-way through a 16-step 

“S-Curve” with seven turns. However, a lot of movement creates enough errors to throw the 

robot off of its assumed position. The majority of these errors appear to develop during a 

turn. Slippage of the wheels on the arena surface is assumed to be the biggest cause of the 

errors. Irregularities in the surface are the other expected problems. This includes dirt, which 

fell out of the obstacles that were using rocks for weight. The dirt and irregularities typically 

caused the skid plate to jerk the robot at a small angle. While a small change in direction is 

negligible initially, the errors increase as the robot moves along. To maintain proper 

localization, after the robot dropped of each target, it was repositioned back at the center of 

the start grid before it was allowed to continue to the next target. 

 
Previous Architectures 
 
 The robot’s software and hardware architectures went through a number of revisions 

before the final design was reached. Each design increment offered improvements over the 

previous and yielded important lessons to be learned from the design’s shortcomings. 
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First architecture, “Buggy” 
 
 The first hardware architecture was modeled after a car with rear-wheel drive (See 

Figure 8, below). While the 9 V motors are efficient, they are not always consistent with the 

velocity derived from the same power input. This means that if one motor is connected to 

each wheel, even if both wheels are set to the same speed, the robot is likely to turn, as the 

motor outputs are not exactly the same. To make a straighter path, a differential was used to 

ensure that the drive wheels had the same rotational velocity. A single motor powered the 

differential shell and this, in turn, powered both wheels. A rotation sensor was connected to 

the motor axle to measure distance traveled. To facilitate turning, a steering drive was created 

for the front wheels. A second motor controlled the front wheels’ angle of turn. A rotation 

sensor was also connected to the turn motor axle to measure angle of turn. In addition to 

providing consistent angular velocity to both wheels during straight-line travel, the 

differential also allowed the rear wheels to move independently during turns, reducing drag 

across the wheel in the outside of the turn. While this model may offer some useful 

experience with front-wheel steering, it also creates complexities undesirable for this project. 

First, since Ackerman steering was not used – which allows the two front wheels to turn at 

different angles – there was drag induced during turns on the front wheels. This meant that 

one wheel had to slip and it was harder to ensure that the robot traveled in the desired arc for 

a specific turning distance. Second, the turn angles and distance to travel for a turn had to be 

calculated. Third, the large turning radius required a larger test area. 
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Figure 8: “Buggy”, The 1st Hardware Architecture 

 
Second architecture, “Seeker” 
 

To compensate for the turning problems with the first architecture, a robot that could 

drive and turn off of the same axle was required. Thus, the second architecture with a dual-

differential drive was developed (See Figure 9, below). Since the rear axle now controlled the 

drive and turning motion, a caster wheel was employed at the front for balance. Initial tests 

proved this model to be successful. It greatly reduced the turning area required by turning 

about the center of its rear axle and made turning calculations simpler. A slight problem 

noted was that after a turn, the robot would waddle a little while the drag wheel straightened 

out. The next step was to add a way to capture a target so that it could be returned to the 

starting location. 
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Side View Bottom View 

Figure 9: “Seeker”, The 2nd Hardware Architecture 

 
Third architectures, “Mantis” and “Trap” 
 
 The third design employed a grabber arm to give the robot the capability to capture a 

target (See Figure 10, below). The second architecture’s base was elongated to accommodate 

the motors and structure for the arm. Two motors were required – one to raise/lower the arm 

and one to capture/release the target. With a requirement for four motors and only three 

output ports on the RCX, a non-commercial multiplexer called a “backpack” was used.8  The 

backpack had three states controlled by output port A. Each state allowed three different 

input ports and two different output ports to be active. This worked well for this design as 

when the two target capture motors were needed, the two drive and turn motors were not 

being used. Also, as a single caster wheel design proved unstable, a dual-caster system was 

used. With a working robot design, an arena was constructed. The lit targets were also 

devised. They originally looked like a 2” tall dumbbell standing on end and housed a small 3 
                                                 
8 The “backpack” was developed and provided to this project courtesy of John Barnes. 
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V penlight and two 1.5 V N-sized batteries in the base. The design worked but suffered from 

the extreme weight added by the grabber arm. Further, there was a lot of difficulty getting the 

initial target lamp design to remain lit for any sufficient amount of time. Even when the 

target was properly identified, it was difficult to get the robot into the correct position to pick 

up the target. This was due to the long distance between the turning wheels and the grabber 

arms. While the rotation sensors on the wheels perceived they had moved only a small 

distance, the arc length of the distance the grabbers traveled was much greater – often 

overshooting the target. Also, if the target was dropped in the middle of pick up, it often fell 

over, leaving the robot very little chance of reacquiring the target given the sensors and the 

configuration of the lift arm grabbers. Once a target was acquired, the robot would seek an 

Infra-Red (IR) signal from another RCX near the starting location. The robot would send an 

IR signal back – something the base RCX would only see if the robot were facing toward it. 

Once this second signal was detected, the base robot would change its signal, indicating to 

the robot that it should move forward. If it lost the robot’s signal, it would return to 

transmitting the original signal. This would indicate to the robot that it was no longer headed 

toward the starting location. The robot would then react by randomly moving about and 

resending its signal until the base RCX once again responded with the appropriate second 

signal. This IR version of Marco-Polo was used to guide the robot back to the starting 

position.  However, it is not always as easy as following a straight-line course. As when the 

robot first went searching for the targets, it would have to avoid any obstacles on its way 

back. A problem that occasionally occurred is that the robot would bump into the target and 

react to it as if it were an obstacle. As long as the target remained upright, this posed no 
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problems. However, it would fall over half the time, resulting in a similar situation as when 

the target was dropped during pick up. 

 

Figure 10: “Mantis”, The 3rd Hardware Architecture 

 

The issues mentioned in the previous paragraph were managed by modifying the 

existing hardware architecture. To reduce the extra weight, the grabber arm was replaced by 

a trap mechanism  (Figure 11, below). Guided by the light sensor, the robot would move 

toward the target with a wedge shaped trap. Once near, the target would slide into the trap as 

the robot moved forward. As the robot neared the lit target, the light intensity value 

increased. When the light sensor detected that the target was close enough, a single trap 

motor would lower an arm in place to ensure that the target did not slide out during turns. 

Since the robot no longer had to pick it up, the target’s top platform was removed and round 

bricks were used for the central column to enable the target to slide into the trap regardless of 

what direction it was encountered from. This gave the target its current shape as shown in 

Figure 11, below. To alleviate the possibility of the target being knocked over by the robot, 

the front bumper was modified to be higher than the base of the target. If the bumper 
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encountered the top of the target, they would go around each other. In case the target went 

toward the outside of the robot, angled pieces were placed so that the target would slide 

across the robot’s side, to be picked up later. While this version of the hardware architecture 

had all of the essential pieces required to make it useful, a number of problems remained that 

still prohibited its success. 

 

Figure 11: “Trap”, Revised 3rd Architecture 

 

These problems stemmed from the fact that the last two revisions were extensions of 

the second architecture rather than a complete redesign. The first problem was that the 

turning axle was still located at the very rear of the robot. Even when the added weight of the 

grabber arm was removed, the wheels at the very back had to create a large moment to move 

the structure (See Figure 12, below). Think of a very heavily loaded shopping cart and trying 

to turn it from the handle alone. This required a lot of power and often resulted in the wheels 

slipping – yielding an incalculable amount of error. Even when the robot did turn correctly, 

the dual-caster system induced more error as the caster wheels straightened out when the 
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robot moved forward after a turn. Second, the rotation sensor was geared 1:1 with the 

movement axle. This meant that every tick of the rotation sensor equated to 22.5 degrees of 

turn. The rear axle is 9.25 inches from the front. This means that the front could stop up to 3 

inches from target position and the error would be undetectable. Next, the two main wheels 

were mounted to the robot structure inward of the two wheels. Outside of the wheels is free-

floating. The LEGO axles tend to be flexible and any heavy weight (like the RCX loaded 

with 6 AA batteries) will cause them to bend (See Figure 9 “Bottom View”, above, and 

examine the rear wheels). This bending causes the robot to deviate from its desired path and 

the error is typically incalculable. Lastly, with the increased length due to adding the target 

capture arm, the area required for turning was once again very large. The robot’s length was 

about 10 inches. For a 180-degree turn, the grid spaces would have to be twice that (20 in). 

Thus, for only a 6 x 4 grid space, the robot would require an arena that was at least 10 ft x 6 

ft 8 in. To correct for these errors, the next robot hardware design was built from scratch with 

elimination of these errors in mind. 
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 A moment arm is defined as the perpendicular distance between the line of action of a 
force and an object’s axis of rotation. 

Moment (in*lb) = Force (lb) * Moment Arm (in) (Equation 1)

Force (lb) = Moment (in*lb) / Moment Arm (in) (Equation 2)

 The same amount of force is required to overcome the coefficient of friction and move the 
robot. So, as the moment arm length increases, the moment itself must increase. In this case, 
the moment is the rotational movement caused by two wheels turning in opposite directions on 
the axle. Thus, to increase the moment, power to the two wheels turning must be increased. 

Figure 12: Moments Explained 

Force Moment Arm 

Axle Wheel 
Rotation
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Fourth architecture, “Balanced” 
 

The ability to turn in place is the biggest change to the fourth hardware architecture 

(See Figure 13, below). The single drive and turning axle was moved to the center of the 

robot while the dual-differential gear assembly expanded to the rear. Further, the motors are 

placed on top of the dual-differential assembly instead of fore and aft, making the robot 

shorter. Further, it enabled the creation of a gear train with a 3:1 ratio between rotation sensor 

rotations and drive axle rotations, allowing for 48 ticks per rotation (7.5 degree error). The 

RCX was placed to set the center of gravity of the robot just aft of the drive axle so that it 
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would rest nicely on a skid plate. While some kneeling did occur if the robot stopped 

abruptly, no errors such as slippage of the wheels was found due to this phenomena. The 

weight, bearing directly down on the center axle, also helped to reduce any slippage on the 

wheels even under a heavy load. Further, the wheels were mounted between two frame 

components. This eliminated the errors associated with the bowing of the axle. It is important 

to note that to make framing the wheels effective, some load must be transferred to the 

outside wheel frame or the horizontal pieces must be made sturdy enough such that the 

outside frame itself does not bend upward under load. The effect was such that the robot 

could turn in place, toward any direction and then move forward, avoiding positioning 

calculations for movement with a turning radius. Another modification to the fourth 

architecture is that the trap motor was removed. Additionally, the trap was redesigned to take 

advantage of the existing target’s shape so that it would remain in the trap during turns. 

Finally, the backpack was removed to remain consistent with the original plan of using only 

commercial off-the-shelf pieces. 

 
Side View Bottom View 

Figure 13: “Balanced”, the 4th Architecture 
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With an earlier version of the return home behavior in the current architecture, the 

forward facing light sensor often interpreted any messages from Home as a bright light 

source if the robot was close. So, the robot would charge into Home trying to get the elusive 

target. While changing the height of the Home RCXs IR port helped a little, it did not 

alleviate the problem entirely. The problem was that, originally, Home constantly emitted an 

“over here” signal. When the robot entered into the return home state, it would look for this 

signal. This was modified to the Marco-Polo algorithm described above. Thus, Home now 

only emits a signal while the robot is using the return behavior. 
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CHAPTER IV 

RESULTS 

Test Run Results 

To emphasize the capabilities of the deliberative robotic architecture and assess its 

weaknesses, a series of test runs were conducted to compare the performance of the reactive 

robotic architecture with the deliberative one. Six different arena layouts were developed 

with three general formats. The formats were a simplistic model with obstacles in the center; 

an S-Curve composed of a single, long corridor that meandered the whole arena; and a Box 

Canyon, an area with only one entry/exit with which reactive robotic architectures typically 

have some problems navigating. There were two obstacle approaches to each format – static 

and dynamic. The obstacle approach means very little to the reactive robotic architecture, 

which retains no world knowledge. However, for the deliberative robotic architecture, a static 

obstacle environment means that the a priori data contains the location of all obstacles 

throughout the entire run. In the dynamic obstacle runs, the deliberative robot is given the 

location of some of the obstacles or an obstacle may be removed. In short, the deliberative 

robot’s plan is forced to fail somewhere during the run. All six of the arena layout patterns 

are presented below in Figure 14. A picture of each arena configuration is shown in Figure 

15, below. 

The reactive robotic architecture successfully completed only the Simplistic courses. 

The robot frequently got stuck in corners and box areas; though random timing functions did 

help it to work its way out. However, this consumed a lot of time. After 20 minutes, the S-
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Curve and Box Canyon tests were deemed unsuccessful. It appears that the complexity of the 

other courses, with numerous turns, offered too difficult a challenge for a random motion 

robot. Had the reactive architecture used a wall-following technique, the results may have 

been more favorable. 

The deliberative robotic architecture successfully completed all courses. The 

Simplistic courses were completed in much less time than it took the reactive robot, even 

with approximately 10 seconds per path planning event. As the robot followed the plan, 

localization remained somewhat accurate with severe errors only arising over long runs or 

runs with a lot of turns. To compensate, the deliberative robot’s code was modified to stop 

after each target was delivered to allow the user to realign the robot. Other error corrections 

including nudging the target within a grid space to ensure it would be properly captured 

when the robot arrived. As the focus of the project was to understand the limitations of the 

deliberative robotic architecture using the RCX, it was felt that the robot should not be 

allowed to completely fail a course if the localization kept the robot at least within the same 

grid space. A drawback of the deliberative robotic architecture is that it is less likely to find 

unknown targets that are away from paths to known targets. With this in mind, after the 

deliberative robot completed the test runs, it was concluded that the RCX could be 

successfully used as a teaching tool with some modifications to the robot and exercise 

requirements. 
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S-Curve, Static S-Curve, Dynamic 

Key: G – Known Goal, G – Unknown Goal, S – Start Location (arrow indicates heading) 
  – Known Obstacle,  – Unknown Obstacle 
 

Figure 14: Arena Layout Patterns for Test Runs 
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a) Simplistic, Static b) Simplistic, Dynamic* 

  
c) Box Canyon, Static d) Box Canyon, Dynamic* 

 
e) S-Curve, Static f) S-Curve, Dynamic* 

*Note: Green obstacles in dynamic arenas are unknown to the robot at the start of the run. 

Figure 15: Project Arena Layouts 

 
 
Classroom Application 

Once it was determined that the deliberative robotic paradigm could be successfully 

implemented on the LEGO RCX, plans were made to incorporate material into SIUEs 

introductory artificial intelligence course. The course already uses the RCX to teach 
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introductory robotics but all of the laboratory assignments use the reactive paradigm. New 

instruction was designed to allow for both reactive and deliberative robotic assignments. The 

material was presented to a class of 23 students during the Spring 2003 semester. 

 
Lectures and robotics projects 

 
The robotic material involved five lectures and assignments (see Appendix C). The 

first lecture covered the basics of what a robot is, discussed the LEGO RCX platform, the IC 

software environment, and LEGO building components and techniques including sensors, 

motors, gearing, and structural considerations. Students were also given their first robotics 

assignment. 

The second lecture covered reactive robotic architectures. The lecture included 

discussions on SENSE-ACT, emergent behavior, the pros and cons of reactive control, and 

behavior coordination. A class exercise, requiring 4 students, was also conducted. One 

student serves as the visual system, another decides the actions, and the other 2 each serve as 

a single arm. For this exercise, the student who declares the actions is blindfolded and the 

two students acting as arms are seated in front of a table. On the table are three boxes. The 

goal of the task is to have the students stack the three boxes on top of each other, in order of 

size. The action generator may only ask questions of the visual system and may only give 

commands to the arms. The intent is to provide students with an idea of how sensors, 

processors, and actuators are separate entities and some of the challenges of coordinating 

their actions to complete a goal. At the end of the lecture, the second robotics project was 

handed out. 
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The reactive robotic paradigm instruction continued during the third lecture. The 

topic of behavior coordination was completed. Potential fields, animal behaviors as models 

for reactive control, FSA diagrams and Stimulus-Response diagrams were discussed. At the 

end of lecture, the students openly discussed and completed a sample FSA problem in class. 

The fourth lecture introduced deliberative robotic control. The lecture included a 

comparison between deliberative and reactive robotic control, SENSE-PLAN-ACT, world 

models, knowledge representation, the pros and cons of deliberative control, short-term 

memory versus long-term memory, and wavefront planners. There was also a brief 

discussion on hybrid control and different approaches to fusing reactive and deliberative 

parts. An in-class demonstration involved setting up a short maze of chairs in the classroom. 

A student volunteer was allowed to count steps and create a plan for following the maze. 

Then, the student was blindfolded and had to execute the plan. During execution, the maze 

was modified. A second individual and the instructor spotted the student to be sure no one 

was hurt. The demonstration highlighted the SENSE-PLAN-ACT process. In retrospect, the 

example may have been made safer by repeating the box stacking demonstration but with one 

student. The student would be allowed to see the location of the three boxes and make a plan 

for stacking. During execution, the student would be blindfolded and two boxes would be 

switched. 

The final lecture focused on localization and the development of a deliberative 

robotic control. The localization information discussed both landmarking and deductive 

reckoning. The development topics included a walkthrough of how a deliberative architecture 

might be created. This project’s robot was used as a model. 
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Students were divided into teams of two for the robotics projects. IC4 was used as a 

programming language. IC4 uses a runtime machine language module. It replaces the 

standard LEGO firmware with its own firmware that has a smaller memory footprint. This 

freed up program memory space for the deliberative program’s world map. Since most of 

SIUE programming courses use the C programming language, the students were already 

familiar with the syntax. 

The intent of the first project was to familiarize the students with the robot-building 

environment and garner further interest in robotics through a competition during 

demonstrations. Students were required to build a line-following robot and demonstrate that 

it could follow a meandering black line. Bonus points were given to the team that could 

successfully complete the line-following project in the least amount of time. 

The second and third robotics projects were designed to mimic the foraging robots 

created for this project. The second involved development of a reactive robot and the third, a 

deliberative one. However, the scope of the effort was much reduced to ensure that the focus 

was on the topics being taught. This included making targets and obstacles colored tape on 

the arena floor. Thus, both could be sensed with a single, downward-looking light sensor. 

Since the targets were tape, they were no longer required to be returned to a starting position, 

simplifying the construction of the robot by not requiring a target trap and reducing 

programming complexity by not requiring a return trip. Given the localization capabilities of 

the robot, it was felt that a return trip would compound errors, reduce the students’ 

satisfaction with their results, and provide nothing in terms of a better understanding of 

localization and planning that could not be gotten from the trip to the target. 
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Given the revised approach, students were assigned the task of designing, building, 

coding, and demonstrating a reactive foraging robot for the second project. The robot was not 

allowed to cross obstacle lines and had to provide an audible indication and stop when it had 

found a target. It should also be noted that the arena contained physical obstacles as well. 

This required the students to create bumpers with a touch sensor. The intent was to require 

them to become familiar with multithreading in the IC environment. Having two different 

sensors required them to monitor both as the robot moved about the arena. 

For the third and final robotics project, students had to develop a deliberative robotic 

architecture that could successfully plan and navigate to a target. While students were told 

about the upcoming deliberative project and recommended to build a hardware architecture 

for the reactive assignment that could be reused, most had to rebuild the robot to meet the 

more stringent requirements required for localization. It should also be noted that the 

deliberative tests only involved one known target and included the dynamic additions of 

unknown obstacles and targets. When an unknown obstacle was encountered, the students’ 

robots were required to stop, replan, and continue without passing through the new obstacle 

grid space. When a new target was encountered, the robots were required to audibly 

acknowledge the new target but could continue to follow the plan through the grid space to 

the original known target. As the robot localization was expected to be perfect, students were 

allowed to give their robot a maximum of three nudges to ensure it did not veer to far off 

course during the run. To encourage the students to consider as many of the causes of 

localization errors as possible, bonus points were given to the team that used the least amount 

of nudges. 
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Classroom results 
 

The teams successfully built robots for all three of the projects. In most cases, it was a 

different robot for each project. While having students build the robots is good for learning 

first hand about the causes of physical errors and sensor limitations, building three different 

physical architectures over the course of five weeks is a waste of valuable time the students 

should be spending on understanding the concepts and implementing them via code. Many 

students felt frustrated at having to start over or modify what already existed between the 

reactive and deliberative foraging projects. Some students also mentioned some frustration 

with the programming language. 

As mentioned above, the students were required to use IC4 to program their robots. 

The language was new to all of the students. However, they were familiar enough with C 

syntax to learn the basics of IC4 fairly quickly. Most were able to properly make use of 

multiple processes for the reactive and deliberative projects. The largest complaint from the 

students was the lack of a debugging environment similar to what they had available to them 

under Microsoft Visual C++. 

Despite any complaints, all but a few students successfully demonstrated the ability to 

understand, design, and construct a deliberative robotic architecture using the LEGO RCX 

and standard LEGO components. In fact, during the deliberative demonstrations, at least four 

teams mentioned that they took it as a challenge to use as few nudges as possible, 

incorporating features such as accounting for gear slop when changing direction of motion. 

Three of these teams used only one nudge while the other used none. All but one team was 
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ultimately successful in planning and navigating their robot to the known target while 

avoiding all obstacles. 

At the end of the robotics lectures and assignments, a feedback survey was handed 

out to all of the students. The results showed that a majority of the students felt that the 

lecture material and projects were worthwhile. They also stated that the deliberative project 

helped them better understand deliberative robotic control. In one question, the students were 

asked if a hybrid robotic control project would have been more appropriate. The intent was to 

ask the students if a hybrid control project should have been done in lieu of the individual 

reactive and deliberative projects. Responses indicated that the question was not phrased 

well, as many students stated that they felt there is little time for another project along with 

the other three. A more detailed summary of student responses may be found in Appendix D. 

 
Conclusion 

By using the LEGO RCX to develop a deliberative robot and allowing students to do 

the same, it has been shown that the RCX platform and standard off-the-shelf components 

are usable as an effective teaching tool for a introductory lesson in the deliberative robotic 

paradigm. Most of the failures and difficulties of the project were a result of the constructed 

environment and self-imposed complexities. In hindsight, the reactive portion of the project 

added little to the support of the final results. The initial thought was that a comparison of the 

two architectures would better explain the results. However, most people were at least 

somewhat familiar with the reactive paradigm or at least what it embodied. Thus, in the end, 

no direct comparison was really necessary. Omitting the reactive robot would have simplified 
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the arena and allowed more freedom in tailoring the hardware design for the deliberative 

architecture. That is not to say that the deliberative robot would have worked perfectly. 

One of the results frequently pointed out is that there was loss of localization even 

with the added safeguards of reducing immeasurable errors such as accounting for gear slop 

and using a balanced construction. This loss of localization is beneficial in demonstrating to 

the students that the real world is a harsh place. Integrating a physical agent with a computer 

program into the real world is no easy task. However, the robot can do the job well enough to 

ensure that the basic concepts of what a deliberative robotic architecture is, is enforced in 

their minds. 

Along those same lines, the complexity levied on the project robots is not required for 

student instruction. The revised, simpler assignment using colored tape was very effective 

and offered enough of a challenge within the allotted time. If the project was made more 

complex, such as by requiring the students to build a trap mechanism and drag a physical 

target around the arena, it would have detracted from the core lessons of designing a robot 

that could sense, plan, and act. 

While the LEGO system can be designed to remove most immeasurable errors, 

deductive reckoning is only so reliable. Some external form of reference is required for 

improved localization. The use of sonar or a compass sensor would greatly improve the 

localization of the deliberative robot. However, this would be best left to a course in 

advanced robotics or one where building such a sensor is part of the instruction. Enough 

information exists on the web detailing construction methods and interface design into the 

RCX to construct these sensors. The other option is to use a more powerful robotic platform 
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better capable of supporting these advanced sensors. For the content of SIUEs current 

Introduction to Artificial Intelligence course, the standard LEGO suite is suitable. 

 
Future Work 

 Over the course of this thesis project, a number of features arose that would have 

been nice to incorporate or may be useful to explore for future student projects. These are 

listed below as a reference for those interested in pursuing them. 

1. To reduce the time that students spend building robots during projects, change 

the project format. The line following robot or a similar robot should remain to 

allow the students an easy introduction to the hardware and programming 

environment. However, the other projects should be combined. The assignment 

should consist of a hybrid control architecture presented in two phases. The first 

phase encompasses designing and building a purely deliberative control 

architecture. The second phase integrates reactive control into the existing 

deliberative robot. In this way, the students would build the second robot to the 

more stringent deliberative robotic control requirements. The lectures would be 

revised to provide deliberative control instruction before the reactive. 

2. The current map is devised as a grid with obstacles and all other objects 

occupying the grid vertex. If obstacles representation is changed to the edges 

between grid vertices, then one-way paths could be developed. The drawback to 

this approach is that for each vertex additional memory would be required to 

retain the connection of each vertex. 
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3. Currently, when the deliberative robot finds a new target, it backs up, adds the 

new target location to the goal array and then develops an entirely new plan, 

including finding the closest target. The robot program should be modified to set 

the newly discovered target as the closest target and plan from there. Or, if a 

hybrid approach is to be used, allow the robot to capture the new target and 

immediately plan a path back to the start position. 

4. Once the current deliberative robot has returned the last known target to the 

start position, it stops. The robot could be programmed to examine neighboring 

grid spaces along its planned path for unknown targets. Alternatively, the robot 

could maintain knowledge of which grid spaces it passed through for all target 

runs and, after it has captured the last known target, devise the most efficient path 

to explore all of the unknown grid spaces. 
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WAVEFRONT PROPAGATION ALGORITHM 

The wavefront propagation algorithm is a path-planning algorithm. It is most easily 

applied to maps using graph representations. Typically, the algorithm treats the grid as a 

conductive material. Heat radiates from the initial space to the goal space. Obstacles have a 

conductivity of 0. The conductivity of other items varies dependant upon the ability to 

traverse the area. The benefits of using the wavefront planner are that it is simplistic and not 

very memory or processor intensive. Its drawbacks are that it is not very efficient; every node 

needs to be visited to find the most optimal solution. Additionally, more than one path 

usually results [12]. 

This project uses a variant of the wavefront propagation planner. First, the goal with 

the shortest path between it and the robot is found. Then, before wave propagation, the 

obstacles and closest goal location are each assigned a unique value – 1 and 2, respectively. 

The wave then starts at the goal coordinates and propagates outward from that point. For this 

project, the robot could only move vertically and horizontally. Therefore, the wave 

propagation was restricted to the same directions. Each non-obstacle grid coordinate is 

assigned a value based upon distance from the goal location (usually in increments of 1). 

When wave propagation is complete, the robot’s current position should have a value 

assigned to it. From there, the robot follows a path of decreasing value back to the goal 

position. The pseudocode for the project’s wavefront algorithm is shown in Figure 16, below. 

An example follows in Figure 17, below. 
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1  WavefrontPropagation(Grid[ ])* 
2    updates = TRUE 
3  while updates = TRUE 
4   updates = FALSE  
5   for each Grid[row, col] 
6    if Grid[row, col] > 1 
7     if Grid[row-1, col] = 0 or 
      Grid[row-1, col] > Grid[row, col] + 1  
8      Grid[row-1, col] = Grid[row, col] + 1 
9     updates = TRUE  
10     if Grid[row+1, col] = 0 or 
      Grid[row+1, col] > Grid[row, col] + 1 
11      Grid[row+1, col] = Grid[row, col] + 1 
12      updates = TRUE 
13      if Grid[row, col-1] = 0 or 
      Grid[row, col-1] > Grid[row, col] + 1 
14      Grid[row, col-1] = Grid[row, col] + 1 
15      updates = TRUE 
16      if Grid[row, col-1] = 0 or 
      Grid[row, col-1] > Grid[row, col] + 1 
17      Grid[row, col+1] = Grid[row, col] + 1 
18      updates = TRUE 
 
* Assumes Grid[ ] is pre-processed to include a goal coordinate set to 2, obstacles set to 1, and the 
remaining grid coordinates set to 0. 

Figure 16: Wavefront Propagation Pseudocode 
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c) Post-propagation d) One Possible Path Generated 

Figure 17: Wavefront Algorithm Propagation Example 
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DIFFERENTIAL GEARING 

A differential gear relays motion from an input shell to the summation of two output 

axles. The purpose of the differential gear is to allow one wheel on the same axle as another 

to move at a different speed when turning. This is required, for the outer wheel in a radius 

turn travels further in the same amount of time as the inner wheel (see Figure 18, below). A 

single differential is typically used in vehicles equipped with two axles – one containing a 

steering mechanism and one that follows the turn (such as a car’s front wheels and rear 

wheels, respectively). The differential is used on the axle that follows the turn. Without a 

differential, the wheels on the axle that follows the turn would drag causing the wheels to 

skid, and, in terms of robot localization, create immeasurable errors. 

 

 

 

 

 

 

 

Figure 18: Radius Turn 
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The length of an arc, s, is equal to product of the angle of the turn, θ (in radians), and 

the radius of the wheel’s turn, r. Mathematically, 

 nradn rs ⋅= θ . (Equation 3) 

Rearranging Equation B.1, it is calculated that 
n

n
rad r

s
=θ  . Thus, 

1

1

r
s

rad =θ and 
2

2

r
s

rad =θ . 

Since the angle, θ, is the same for both wheels, the two equations are equal to each other. 

Then, rearranging to put like terms on each side yields 

 
1

2

1

2

s
s

r
r
=  (Equation 4) 

In summary, the ratio of the radius of the turn for each wheel is equal to the ratio of 

the distance traveled (arc length) for each wheel. As the outer wheel has a greater radius of 

turn, it must also have a larger distance to travel. Additionally, as it must travel a farther 

distance in the same amount of time as the inner wheel, it must travel at an increased velocity 

in order to do so. The later can be determined from the equation Velocity = Distance / Time. 

Since the time to complete the turn is equal for both wheels then it can be determined that the 

wheel traveling a farther distance must also be traveling at a greater velocity. In order for two 

wheels on the same axle to travel at different velocities, a differential is required. 

The LEGO differential shell is used in conjunction with 3 12-tooth (12t) bevel gears 

and 2 axles (see Figure 19, below). The differential is driven through either the 24-tooth (24t) 

or 16-tooth (16t) gears that are part of the differential shell. When the differential shell turns, 

the center 12t bevel gear rotates with the shell. If both of the axles are unloaded (or equally 

loaded) then the central 12t gear drives the two outer 12t bevel gears to turn in the same 
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direction, at the same speed. Thus, turning both axles in the same direction, at the same 

speed. However, if the movement of one of the axles was stopped (being held, for instance) 

then the differential shell would still move but the central 12t gear would spin about the gear 

attached to the stopped axle. The motion of the central gear would then drive the remaining 

12t gear even faster. Thus, one wheel would rotate differentially with respect to its 

counterpart. 

Axle 
 
 

Axle

equal to

 

where 

angular

velocity

since (
Differential
Shell
 

  

a) Pre-assembled Differential b) Assembled Differential 

Figure 19: LEGO Differential Gear Assembly 

12-tooth 
bevel gears  

 

Mathematically, the angular velocity (speed and direction) of the differential shell is 

 the average angular velocities of the two axles as shown in Equation (4), above. 

2
)( 2_1_ AxleAxle

shell

ωω
ω

+
=  (Equation 5) 

ωshell is the angular velocity of the differential shell and ωAxle_1 and ωAxle_2 are the 

 velocities of the two axles. Thus, if it is known that each wheel is turning at angular 

 x, then it is known that the differential shell is also turning at angular velocity x, 

xxx
=

+
2

) . Similarly, if it is known that the differential shell is turning at y, then the 



64 

 

average angular velocity of the two axles must also be y. However, the angular velocities of 

the individual axles would be unknown. If the differential shell is stationary, it means one of 

two things. Either both of the wheels are stationary or both wheels are turning at the same 

speed but in opposite directions, as 0
2

))((
=

−+ xx . 

While a single differential is useful for radius turns, it is difficult to apply it for 

assured straight-line motion. The reason for this is that, if at any time some force acts upon 

one axle and not equally upon the other (like dirt on the floor), the motion will be 

immediately translated through the differential gears and cause the uninhibited axle to turn 

even faster. With one wheel turning fast and another slow, the vehicle will turn from a 

straight path. Further, using a single differential forces the added complexity of an additional 

axle with a steering mechanism. A more effective approach for some robots is the use of two 

motors, each connected to a wheel and each having its own rotation sensor. Then, an error 

correction method like Proportional, Integral, and Derivative (PID)9 could be used for error 

correction. Since the wheels are independent, they could also be used for turning. However, 

there is an easier way to assure straight-line motion and the ability to turn with a single axle – 

the dual-differential. 

The dual-differential is a gearing of two differentials within the same gear train. One 

differential controls linear motion and the other differential controls turning with a separate 

motor driving the rotation of each differential. The wheel axles pass through the linear 

differential. The differential gears on the turn differential are connected to the wheel axles 
                                                 
9 PID is an error correction method that provides a correction response based upon the amount of current error, 
the total amount of error over time, and the change in error. 
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through a series of idler gears10 – an even number on one side, an odd number on the other. 

The difference is essential to ensure that when the turn differential is rotated, the motion is 

translated to the wheels with equal but opposite angular velocity. A diagram of a dual-

differential configuration is below in Figure 20. 

 
 

 

Figure 20: LEGO Dual-Differential 

Turn 
differential Wheel axle 1  

Linear 
differential 

Wheel axle 2 

 

The benefit that the dual-differential offers is three-fold. First, if one differential shell 

is held steady (by braking the motor, for instance) and the other differential is rotated, equal 

power is assured to both wheels even if a force acts unequally upon the wheels. Second, both 

linear motion and turning can be achieved using the same axle. To avoid the errors and 

complications that a steering mechanism causes, a skid plate can be used on the back of the 

                                                 
10 Idler gears are gears that do not modify the velocity/torque of the gear train but serve only to change the 
direction of motion. 
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robot. Third, if both differentials are rotated at the same time, then a radial turn can still be 

achieved. 

When one differential shell is rotated and the other is held steady, equal power to both 

wheels is assured because the wheels are physically connected via the gear train that passes 

through each differential. For instance, if the linear differential is driven forward and the turn 

differential shell is held, then the situation is similar to a single differential. But, the idler 

gears would cause the two side 12t bevel gears inside the turn differential to rotate at equal 

speeds but in opposite directions. This, in turn, would cause the center 12t bevel gear to spin 

at the same speed as the two side bevel gears. With the turn differential held steady, the two 

side bevel gears are unable to spin at different speeds because they are both connected to the 

same center bevel gear. This ensures that the wheel axles spin at the same speed. 

Further, if a portion of the dual-differential system is isolated and just the turn 

differential and its two axles are viewed, then according to Equation (5), the angular velocity 

of the shell must be 0.11 Why then is it necessary to “hold” this other differential? As 

mentioned above, if an outside force acts upon a wheel/axle connected to a differential, then 

the differential just transfers more power to the wheel/axle that is free. If the opposite 

differential were not held, then this change would cause a difference in the speeds of the two 

wheel axles. When the two side bevel gears try to drive the same center bevel gear at 

different angular velocities, there is an imbalance. The difference in the angular velocities of 

the two side gears is now translated from the center bevel gear to the differential shell, 

 
11 Recall that the idler gears change the direction of motion between one wheel axle and the turn differential. 
Thus, the equation changes to be the difference between the angular velocity of two wheel axles, not the sum. 
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causing it to turn. In essence, the central bevel gear rotates at the speed of the fastest side 

bevel gear. The center gear then forces the shell to rotate around the slower bevel gear at the 

difference of angular velocity between the two side bevel gears. The exact motion of the 

wheels would be unknown, the same situation as if it were a single differential. However, by 

holding the turn differential shell, the center bevel gear cannot translate the power. This 

forces the linear differential to maintain equal power to both wheel axles. 

The above holds true for both turning and linear motion. If the linear differential is 

rotated and the turn differential shell is held, then the motion translates through the bevel 

gears within the turn differential. As explained above, this would provide equal angular 

velocity to the wheel axles in the same direction as the linear differential shell is turned. 

Similarly, if the linear differential shell is held and the turn differential is rotated, then the 

motion from the turn differential is translated through the bevel gears within the linear 

differential shell. This situation provides the wheel axles with the same speed, but in opposite 

directions. If the direction of rotation of the turn differential shell were reversed, then the two 

wheels would also reverse direction. As the wheels are turning at equal speeds but in 

opposite directions, the robot turns in place. 

By turning both differentials at the same time, a turn with greater than a 0° radius can 

be achieved. Above, it was explained that when one differential shell is rotated, equal power 

is translated to both wheel axles when the other differential is held steady. For rotational 

motion to the linear differential, the wheel axle rotation is in the same direction; for the turn 

differential, it is in the opposite direction. Therefore, mathematically, it can be written 
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when the linear shell is rotated and the turn differential is held. Similarly, 

 
2
_

2_1_
shellturn

AxleAxle

ω
ωω =−=  (Equation 7) 

when the turn differential is rotated and the linear differential is held. To calculate the effect 

on the wheel axles when both differentials are rotated, the above two equations for each 

respective wheel axle can be summed as follows: 
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With the above knowledge, the robot can be coded to rotate each differential 

appropriately. How finite of a control there is over the turn will depend largely upon the 

amount of motor speed control provided by the programming environment used. What is 

required is the desired turn angle, the inside turn radius, the width of the wheelbase (to 

calculate the outside turn radius), and the diameter of the wheel. In addition, a rotation sensor 

is required to be attached somewhere between each motor and differential gear train. 

The goal is to calculate velocity ratios required of each motor to execute the desired 

turn. The exact velocity is not required unless there is a specific time in which the turn must 

be executed. Since the time to complete the turn for each wheel must be the same, the ratio of 

the two arc lengths, s1 and s2, is equal to the ratio of ωAxle_1 and ωAxle_2. Per Equation (4), this 

is the ratio of the two turn radii, r1 and r2. Next, take the desired turn angle and a turn radii 
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and calculate the arc length using Equation (3). Since the ratios are all inter-related, only one 

arc length needs to be calculated. The next step is to calculate the circumference of each 

wheel. The number of wheel rotations required to execute the turn is the arc length divided 

by the circumference. The number of rotation sensor ticks per wheel rotations should be 

known. Multiply this value by the number of wheel rotations to complete the turn and this 

yields the number of ticks upon which the turn has been executed. 
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STUDENT ROBOTIC ASSIGNMENTS 

The following pages are copies of student robotic projects assigned as a part of SIUEs 

undergraduate Introduction to Artificial Intelligence course, CS 438, in Spring 2003. These 

assignments were developed as a part of this thesis project to determine if the results of this 

project could be successfully applied to a classroom environment. The goal was to enable 

students to develop deliberative robotic architectures using the LEGO RCX and commercial 

off-the-shelf LEGO components; thereby enhancing their understanding of the subject 

matter. 
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CS 438 – Artificial Intelligence 
Interactive C Robotics Assignment 1 (RA1) 

 
This assignment is designed to give you some experience with the Interactive C programming 
environment and building your own robot.  You will build and program a robot that follows a 
wavering black line across a mat from a start to a finish point. Your robot should successfully manage 
the line in the most time efficient manner possible.   
 
Items to Note: 

• Your robot must fit and start completely within the start box on the mat. 
• A part of the path has been taped because white lettering appears underneath.  In the past, this 

has caused some robots to miss the line.  As such, your light sensors need to be far enough up 
off of the mat as to avoid hitting the tape edges.  Should anyone encounter trouble because of 
the tape, please inform Gary. 

• The robots will be tested in EB 2029.  The lights will be dimmed slightly to reduce glare off 
of the glossy mat.  However, it is recommended that you program your robot to calibrate its 
light sensor beforehand and adjust threshold values accordingly.  A marker will be placed on 
the room dimmer to indicate the light setting that will be used during the trials. 

• The loop may be taken either direction – clockwise or counterclockwise. 
• Your robot need not do anything special (stop, beep, whatever) once it enters the finish zone, 

as it will be difficult to tell the zone edges from a line that it was following. 
• The mat will be available for use in EB 2029 for testing purposes.  Do not remove it from 

EB 2029. 
 
 
This assignment is due Wednesday, 02 April 2003 at 1:29PM and is worth 100 points.  Any late 
submissions will receive a late penalty and be ineligible for bonus points.  Turn in a hardcopy of 
your program (the *.ic file(s)) at class time on the due date.  Name your program RA1-[each 
teammate’s initials].ic and place it in the dropbox under Assignment 6.  If your code spans multiple 
files, either zip them or place them all into one text file with the start and end of each individual file 
clearly marked.  The assignment only needs to be submitted once by a single teammate.  Be sure to 
place ALL teammate names in the comment blocks at the start of the program to ensure proper credit 
is received. 
 
Each team will be given a single trial to complete the line following course.  The robot must be 
programmed with a 1 second delay after pressing the Run button.  This will ensure that the robot is 
not accidentally thrown off course by moving while someone’s hand is in the way.  If the robot does 
not complete the course the first time, the team may elect to make a second attempt with a 5-point 
penalty.  Only one additional attempt is allowed. 
 
Robots that follow the path around and successfully complete it will receive a base score of 80 points.  
If the loop is successfully traversed, an additional 10 points will be given.  The additional 10 points 
will be awarded based upon how well the robot is constructed and the logic in your robot’s program. 
 
The robot demonstrations / competition will occur in EB 2029 during the last half of class time on 02 
April. 
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Bonus:  A record will be kept of the time that it takes every robot to successfully complete the line 
following course.  A bonus of 10 points each member will be given to the team whose robot has the 
best time score and can successfully navigate the loop.  A bonus of 5 points each team member will 
be given for the fastest robot that was unable to navigate the loop BUT was able to complete the path 
in less time than the second fastest robot that did take the loop. 
 
Please contact Gary Mayer, gmayer@siue.edu, with any questions regarding Interactive C or robot 
construction. 

mailto:gmayer@siue.edu
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CS 438 – Artificial Intelligence 
Interactive C Robotics Assignment 2 (RA2) 

 
This assignment is designed to give you experience with a reactive robotic architecture.  You will 
build and program a robot that emulates a scavenging animal.  The robot will explore an area looking 
for “food” and avoiding obstacles (such as a wall). Your robot should successfully find the “food” in 
the most time efficient manner possible using a reactive robotic architecture.   
 
Items to Note: 

• The arena is a 40” x 60” space with a white background.  You can think of this as a 4 x 6 grid 
of squares, each with 10” sides. 

• Your robot must fit entirely within a single grid square.  To do so, it must be no larger than 8” 
wide and deep.  The grid space may be occupied by tape along their borders, making them 
less than the original 10” dimension. 

• Black tape will be used to emulate obstacles and green tape will emulate food.  The tape will 
be placed on the surface of the grid.  (i.e.  A light sensor needs to point downward.) 

• Tape obstacles / food will outline a 10” x 10” square (one grid space). 
• Physical obstacles may also be placed in the arena.  (i.e.  You need a bumper.  If you run out 

of sensor ports, see the lecture notes on muxing touch sensors with a light sensor.)  It will 
most likely not occupy an entire square. 

• The robot may not cross a black line.  It is understandable if a small portion of the robot 
crosses over but the robot as a whole must react to go around the black line as soon as it sees 
it. 

• If the robot senses food, it should beep three times and stop.  Only a single grid space will 
contain food. 

• The arena will be available for use in EB 2029 for testing purposes.  Please do not remove it 
from EB 2029.  Tape will also be made available for you to test your robot with different 
obstacle / food configurations. 

• The same (or nearly the same) environment will be used for the next assignment.  The 
difference is that your robot will plan its trip.  If you wish, you can try to build a robot model 
that will accomplish both the reactive and deliberative tasks.  If you wish to do this, then 
build the model such that it is capable of traveling a straight line.  (I’d suggest using a 
differential or two).  You will also need to use the rotation sensors to determine the distance 
traveled from grid to grid for the next assignment.  If you don’t use the rotation sensors for 
this assignment then you can either incorporate them into the design and leave them unused 
or try to leave room for their addition later. 

 
Each team will be given a single trial to complete the course.  The robot should be programmed with 
a 1 second delay after pressing the Run button.  This will ensure that the robot is not accidentally 
thrown off course by moving while someone’s hand is in the way.  Optimally, the robot should find 
the food within 5 minutes, but no more than 20 minutes. 
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Robots must use a reactive architecture (direct Sense → Act) to complete the assignment.  Specific 
locations for the start position, start direction, obstacles, and food will be established on the day of the 
demonstrations.  All teams will demonstrate using the same layout.  You will not be allowed to test 
against this layout.  Remember, a reactive architecture’s strength is handling the Open World 
assumption. 
 
This assignment is due Wednesday, 16 April 2003 at 1:29PM and is worth 100 points.  Any late 
submissions will receive a late penalty.  Turn in a hardcopy of your program (the *.ic file(s)) at 
class time on the due date.  Name your program RA2-[each teammate’s initials].ic and place it in the 
dropbox under Assignment 7.  If your code spans multiple files, either zip them or place them all 
into one text file with the start and end of each individual file clearly marked.  The assignment only 
needs to be submitted once by a single teammate.  Be sure to place ALL teammate names in the 
comment blocks at the start of the program to ensure proper credit is received. 
 
Grading: 

Logic and Coding 40 pts 
Robot Physical Construction 25 pts 
Overall Design (Integration) 10 pts 

Finds food 25 pts 
Total: 100 pts

 
 

The robot demonstrations will occur Thursday, 17 April, and Friday, 18 April.  A sign-up sheet 
will be made available with specific times on these dates.  To ensure fairness to those testing earlier, 
teams will be required to leave their robots when they turn in the assignment and/or upload the code 
from the dropbox before testing (instructor’s option). 
 
Please contact Gary Mayer, gmayer@siue.edu, with any questions regarding Interactive C or robot 
construction. 
 

      

      

      

      

Obst 

Obst Food 

Obst 

Obst 
<Start> 

 
Figure 1 – Example of an Arena Layout 

mailto:gmayer@siue.edu
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CS 438 – Artificial Intelligence 
Interactive C Robotics Assignment 3 (RA3) 

 
This assignment is designed to give you experience with a deliberative robotic architecture.  You will 
build and program a robot that plans a route to a goal (or goals) and avoids known obstacles.  Your 
robot should successfully find the goal in the most time efficient manner possible using a deliberative 
robotic architecture.   
 
Items to Note: 

• The arena is a 40” x 60” space with a white background.  You can think of this as a 4 x 6 grid 
of squares, each with 10” sides. 

• Your robot must fit entirely within a single grid square. 
• Black tape will be used to emulate obstacles and green tape will emulate the goal.  The tape 

will be placed on the surface of the grid.  (i.e.  A light sensor needs to point downward.) 
• Tape obstacles / goal will outline a 10” x 10” square (one grid space). 
• Physical obstacles may also be placed in the arena.  (i.e.  You need a bumper.  If you run out 

of sensor ports, see the lecture notes on muxing touch sensors with a light sensor.)  It will 
most likely not occupy an entire square. 

• If the robot senses a goal, it should beep three times and stop.  More than one grid space may 
contain a goal. 

• The robot may pass through a grid containing a goal. 
• The robot may not pass through a grid containing an obstacle.  It is understandable if a small 

portion of the robot crosses over the line to properly sense it, but the robot as a whole must go 
around the grid space. 

• The arena will be available for use in EB 2029 for testing purposes.  Please do not remove it 
from EB 2029.  Tape will also be made available for you to test your robot with different 
obstacle / goal configurations. 

• To make the plan and execute it efficiently, your robot must know where it is within the 
arena.  This can be accomplished through use of ded reckoning with the rotation sensors 
(counting how many “ticks” to the next grid space).  However, this process can be severely 
hampered by immeasurable errors such as drift.  To minimize these errors, you need to build 
your robot such that it can consistently travel a straight line and turn ninety degrees. 

• As it is rather difficult to build a robot that will travel perfectly straight and turn a consistent 
ninety degrees all of the time, you may, at the instructor’s discretion, nudge to robot back on 
course.  This will only be allowed twice during the entire run.  Do not mistake this as an 
opportunity for sloppiness.  If it does not appear that your team put considerable effort into 
attempting to make it move straight and turn ninety degrees, points will e deducted. 

 
 
Each team will be given a single trial to complete the course.  The robot should be programmed with 
a 1 second delay after pressing the Run button.  This will ensure that the robot is not accidentally 
thrown off course by moving while someone’s hand is in the way.  The robot must reach the original 
goal within 10 minutes – including planning, any required re-plans due to plan failure, and actual 
movement. 
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Robots must use a deliberative architecture (Sense → Plan → Act) to complete the assignment.  
Specific locations for the start position, start direction, obstacles, and goal will be established on the 
day of the demonstrations.  Your robot must be capable of having these locations manually entered at 
run-time.  All teams will demonstrate using the same layout.  You will not be allowed to test against 
this layout.  Your robot must be capable of handling plan failure (a new goal or obstacle is found). 
 
If a new goal is found, the robot must audibly signal that it recognizes the new goal.  Then, it may 
proceed on its existing path to the original goal.  If a new obstacle is found, the robot must stop and 
plan a new path from it’s current location to the goal – around the new-found obstacle.  Be sure to 
account for the robot being off-center of a grid space if this is important to the localization problem. 
 
This assignment is due Wednesday, 30 April 2003 at 1:29PM and is worth 100 points.  
Any late submissions will receive a late penalty.  Turn in a hardcopy of your program (the 
*.ic file(s)) at class time on the due date.  Name your program RA3-[each teammate’s 
initials].ic and place it in the dropbox under Assignment 8.  If your code spans multiple 
files, either zip them or place them all into one text file with the start and end of each 
individual file clearly marked.  The assignment only needs to be submitted once by a single 
teammate.  Be sure to place ALL teammate names in the comment blocks at the start of the 
program to ensure proper credit is received. 
 
Grading: 

Logic and Coding 40 pts 
Robot Physical Construction 25 pts 
Overall Design (Integration) 10 pts 

Finds goal 25 pts 
Total: 100 pts
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SUMMARY OF STUDENT FEEDBACK FORMS 

The following pages are copies of the Robotics Instruction Questionnaire that was 

distributed to the students after the robotics lectures were completed. From the 23 students 

taking the course, 19 responses were received. Within each question space, the average 

response score, median response score, and a summary of relevant comments are included. 

Notes regarding the student feedback are also included. 

The overall feedback was very positive. Students were asked to provide responses on 

a scale of 1 to 5. One represented Strongly Disagree and 5 represented strongly agree, with 5 

being the preferred response. The median of the response scores for all questions, except one, 

was 4.0. The one question was attempting to ask if having a hybrid robotic assignment would 

help with understand hybrid robotic architectures. Most students interpreted this as adding 

another lab into the whole robotic instruction versus looking at it from a strictly “would it 

beneficial to have a lab versus just lecture” point of view and marked it very negatively. The 

average for all scores, except for the same hybrid robotic control question, did not fall below 

3.42. So, while both positive and negative comments were received for many responses, the 

overall indication from the class as a whole indicates a positive experience. 

The major item drawn from the responses is that the amount of time spent building 

robots should be reduced. While construction may provide the students experience with the 

flaws of the mechanical world, too much (especially repetitively) drew away from the core 

lessons concerning the robotic paradigms and frustrated the students. A hybrid robotic 

control project, combining aspects of reactive and deliberative robotic paradigms and 

requiring only one robot to be built, may be the best solution. Further, a simple project 
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should remain as the first assignment to allow the students to gain familiarity with the 

hardware and programming environment. 

Additional responses received indicate that some students thought that the course was 

too hardware-focused. The intent was to provide an overall view of robotics, which includes 

how hardware and software interface and the role that hardware (both the physical design and 

the sensors) can play when the robot interacts with the real world. It’s this interaction with 

the real world that generates so many anomalies and errors that the programmer should be 

ready to compensate for as best as possible within the software. While less than 20% of the 

responses stated such an opinion, the fact that such comments were made may indicate that 

more emphasis needs to be placed on why understanding the hardware is important for 

robotics – whether designing the hardware or software. 
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CS 438 – Artificial Intelligence 
Robotics Instruction Quesionnaire 

 
This questionnaire is not an official SIUE class survey.  However, it would be greatly 
appreciated if you would take the time to complete it.  This survey’s purpose is three-fold: 

1) Help the instructor determine your evaluation of the Teaching Assistant’s (TAs) 
performance in teaching you about robotics.  Similarly, it will help the TA improve 
his teaching skills for the future. 

2) Evaluate the usefulness of the information the TA has gathered while completing his 
thesis. 

3) Provide feedback to the CS department chair to enable better integration between CS 
438 and robotics courses that may be taught in the future. 

 
For each question, please circle a number corresponding to your response to the statement. 

1 – Strongly Disagree 2 – Disagree 3 – Undecided 4 – Agree 5 – Strongly Agree 
 
Please include any comments in the space below each statement and / or on the back.  If on 
the back, please reference the comment number.  Please keep in mind that this questionnaire 
refers only to the robotics portion of the course. 
 
1.  The presentation material and in-class examples were appropriate and 
helped me better understand robotics. 

1   2   3   4   5 

Comments: 
- A bit too much mechanics. 
 

2.  I required additional help from the TA outside of class. (  Y or  N  )  If Yes, 
the additional help provided by the TA was of value. 

1   2   3   4   5 

Comments: 
 

3.  This course provided an appropriate amount of material on robotics. 1   2   3   4   5 
Comments: 

- Way too much robotics. More interested in other AI topics. 
- Should be more robotics. 
- Good general overall view of mechanical and programming aspects. 
- Make last assignment easier for end of semester. 

4.  Lab assignments are the best approach to determining a student’s 
understanding of robotics.  (Vice methods like quizzes, homework, or papers.) 

1   2   3   4   5 

Comments: 
- Assignments were a bit too much for time allotted. 
- Showed how to implement concepts; not just memorize them. 
- Learned a great deal and had fun doing it. 
- Had difficulty with the mechanics and building. Robots are finicky. 

Avg: 4.0; Med: 4.0 

Avg: 3.67; Med: 4.0 

Avg: 3.78; Med: 4.0 

Avg: 3.89; Med: 4.0 
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5.  Overall, The robotics labs assigned complimented the lectures and furthered 
my understanding of robotics.  Specifically, … 

1   2   3   4   5 

5.a.  Having a small project as the first assignment was very beneficial in 
allowing me to learn the software and experiment with the hardware prior to 
the next assignments. 

1   2   3   4   5 

5.b.  The reactive robotic control assignment gave me a clear understanding of 
a reactive system’s benefits and drawbacks. 

1   2   3   4   5 

5.c.  The reactive robotic assignment was well worth doing. 

 
1   2   3   4   5 

5.d.  The deliberative robotic control assignment gave me a clear 
understanding of a deliberative system’s benefits and drawbacks. 

1   2   3   4   5 

5.e.  The deliberative robotic control assignment was well worth doing. 

 
1   2   3   4   5 

5.f.  From the last two assignments, I can clearly understand how a mixture of 
the two approaches would best serve most robotic platforms. 

1   2   3   4   5 

5.g.  I do not feel an additional assignment is necessary to understand the 
benefits of a hybrid robot control architecture. 

1   2   3   4   5 

Comments: 
- While most responded that there are too many assignments; the original intent was not to ask if an assignment should 

be added, but if (regardless of time) one would be beneficial to understanding the material. 
- This much depth should only be used in an all-robotics course. 
- Computing power is so low and sensor error so bad that it detracts from designing good logic. 

6.  The requirements for each lab assignment were clearly understood from the 
assignment sheet and explanation given in the classroom. 

1   2   3   4   5 

Comments: 
- Grading / points assignment needs revision. 

7.  The size of each team was appropriate and enabled me to participate hands-
on in each lab assignment. 

1   2   3   4   5 

Comments: 
- Pairs are probably the best for programming teams when code can’t be split. 
- Teams are an unfair way to evaluate individuals. 
- Teammate never participated / was uncompromising. 

8.  The software used to code the robot was appropriate for the assignments 
given and the hardware available. 

1   2   3   4   5 

Comments: 
- No debug function. [Note: latest version includes a “code check function”] 
- Extremely glad we used a C environment 

Avg: 4.16; Med: 4.0

Avg: 4.42; Med: 4.0 

Avg: 4.21; Med: 4.0

Avg: 3.74; Med: 4.0

Avg: 3.79; Med: 4.0

Avg: 4.16; Med: 4.0

Avg: 4.16; Med: 4.0

Avg: 2.42; Med: 3.0

Avg: 3.79; Med: 4.0

Avg: 4.0; Med: 4.0

Avg: 3.63; Med: 4.0
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9.  Having to build the robot gave me a better understanding of the importance 
hardware plays in robotic performance. 

1   2   3   4   5 

Comments: 
- Allowed more creativity. 
- Hardware played too much of a role. If hardware was messed up, robot couldn’t complete task regardless of code. 

10.  Having to build the robot provided a better understanding of sensor 
limitations. 

1   2   3   4   5 

Comments: 
- Greatly. 
- Had to calibrate sensor values. 
- Learned difficulty of [using] sensors. 

11.  Having to build the robot was worthwhile in understanding overall robot 
design, including hardware-to-software integration. 

1   2   3   4   5 

Comments: 
- Learning about dual-differential seemed a bit much; though interesting. 
- Hands-on experience good source of knowledge. 

12.  Overall, the robotics labs were at the appropriate difficulty level for the 
course. 

1   2   3   4   5 

Comments: 
- Too [strict] in grading. 
- Hardware too difficult. 
- Robotic assignments easier than first half of course. 
- Building robots took most of the time. 
- Too many aspects to the assignments to be done within allotted time. 

13.  If an additional assignment is given requiring a robot to deliver mail to offices and travel in 
a model university (complete with a random placement of people), I would suggest the following 
robotic architecture:  (Circle one and please explain in the comments section below). 

 REACTIVE HYBRID DELIBERATIVE 
Comments: 
[Note: The intent of this question was to examine the students’ understanding of the different robotic paradigms. The majority of 
the students answered the question correctly.] 

14.  I was interested in robotics prior to taking this course. 

 

1   2   3   4   5 

15.  This course enhanced my interest in robotics and I would like to learn 
more. 

1   2   3   4   5 

Comments: 
- I enjoyed the robot portion. 
- I can only take a class in robotics if I have a lot of time. 

16.  Overall, I was very pleased with the robotics section of this course. 

 
1   2   3   4   5 

Avg: 4.32; Med: 4.0

Avg: 4.11; Med: 4.0

Avg: 4.16; Med: 4.0

Avg: 3.68; Med: 4.0

Avg: 3.55; Med: 3.50

Avg: 3.42; Med: 4.0

Avg: 3.89; Med: 4.0
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HARDWARE BUILDING INSTRUCTIONS 

This is a detailed, visual description of how to build the robots used in this project. 
Given the reliance of the architecture on the dual-differential for accurate localization, it is 
the core of the overall design. The robot is built around the gear train and seeks to minimize 
immeasurable errors caused by an imbalanced design. Fittingly, the construction begins with 
the dual-differential. The next layer contains the gears between the motor and the differential. 
The third gear layer adds the motors and rotation sensors. Throughout, the remaining steps 
encapsulate the gear train and define a balanced support structure for the motors and RCX. 

 
The diagrams were created in MLCAD version 3.0; created by Michael Lachmann. 

The software is free for download and may be found at http://www.lm-software.com/mlcad/. 
 
During building, it may be true that a different piece may more efficiently substitute 

for one or two within the model. However, when the model was created, an attempt was 
made to use only a single set of pieces from the currently available, off-the-shelf LEGO 
Mindstorms sets. 

 
To begin, Table 2, below, lists the parts required for construction. It was 

automatically generated by MLCAD. LEGO parts are used throughout a variety of different 
sets for different purposes. As such, the MLCAD descriptions may not be intuitive. However, 
the descriptions are typically useful enough to accurately identify a part and they do conform 
to LEGO nomenclature. For those unfamiliar with it, LEGO nomenclature uses the term 
“brick” to identify a block-type piece that is equal in height to 3 stacked “plates.” The 
number of studs on a part is then used to identify that part. For example, a “Brick 2 x 4” 
refers to a brick with 2 rows of studs and 4 columns – a total of 6 studs. Typically, the 
difference between a technic brick or plate and a normal brick or plate is the technic version 
has holes through the sides or top. When a number is given for an axle, that number refers to 
the axle’s length. So, a “Technic Axle 5” refers to an axle that is 5 studs long. On wheels, the 
numbers refer to millimeter diameters. Some of the wheels have this dimension stamped onto 
them. On angle connectors, the number is stamped onto the connector. The drawings that 
follow use the MLCAD descriptions for labels. In addition, other common abbreviations are 
used. For instance, gears are often abbreviated by using the number of gears followed by a 
“t” for teeth. Thus, a “24t” gear refers to a 24-tooth gear. 

 
Table 3, below, provides step-by-step building instructions. Each step lists the parts 

required for the step on the right and provides a visual image of how the parts are assembled. 
While color does not usually matter, there are exceptions. For instance, technic pins. Technic 
pins are light-grey and are meant to freely rotate when inserted into brick holes. Frictions 
pins look just like technic pins but they are black. They are intended to hold pieces tightly 
together and, therefore, do not turn easily in the holes. Technic rubber bands are another 
example. Each color represents a different length and thickness. 
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Table 2: LEGO Hardware Parts List 

Quantity Color
MLCAD    

Part Number MLCAD Description
    2  Black 6048.DAT Arm Piece with Pin and 2 Fingers 

1  Black       2654.DAT  Boat  2 x  2 Stud 
5  Black 3004.DAT  Brick  1 x  2 
1  Yellow 3004.DAT Brick  1 x  2 
3  Black       3003.DAT  Brick  2 x  2 
3  Black 3001.DAT  Brick  2 x  4 
1  Blue 2982C01.DAT Electric Light Sensor (Complete Assembly Shortcut) 
1  Light-Gray 884.DAT Electric Mindstorms RCX (Complete Assembly 

Shortcut) 
2  Black       4755.DAT  Electric Plate  1 x  2 with Contacts 

(Note: robot requires 4 connector wires) 
2 Blue 2977C01.DAT Electric Rotation Sensor (Complete Assembly 

Shortcut) 
2  Light-Gray 2983.DAT  Electric Technic Micromotor Pulley 
3 Light-Gray 71427C01.DAT Electric Technic Mini-Motor  9V 
1  Light-Gray 879.DAT  Electric Touch Sensor Brick 3 x  2 (Complete 

Assembly Shortcut) 
4  Black       4221.DAT  Grab Jaw 
2  Yellow      4220.DAT  Grab Jaw Holder 

13  Light-Gray 3023.DAT  Plate  1 x  2 
4  Light-Gray 32028.DAT Plate  1 x  2 with Door Rail (Technic motor holder) 
1  Yellow      3623.DAT  Plate  1 x  3 
2  Light-Gray 3710.DAT  Plate  1 x  4 
2  Light-Gray 3666.DAT  Plate  1 x  6 
3  Light-Gray 3460.DAT  Plate  1 x  8 
2  Light-Gray 4477.DAT  Plate  1 x 10 

 1  Blue 3022.DAT  Plate  2 x  2 
    3  Light-Gray 3022.DAT  Plate  2 x  2 

4 Light-Gray 2420.DAT  Plate  2 x  2 Corner 
4  Light-Gray 2817.DAT  Plate  2 x  2 with Holes 

    1  Light-Gray 3020.DAT  Plate  2 x  4 
    4  Yellow 3020.DAT  Plate  2 x  4 

2  Light-Gray 3832.DAT  Plate  2 x 10 
1  Light-Gray 3033.DAT  Plate  6 x 10 
3  Black  3747.DAT  Slope Brick 33  3 x  2 Inverted 
2  Black  3665.DAT  Slope Brick 45  2 x  1 Inverted 
2  Yellow  3665.DAT  Slope Brick 45  2 x  1 Inverted 
1  Black  3660.DAT  Slope Brick 45  2 x  2 Inverted 
2  Light-Gray 32015.DAT Technic Angle Connector #5 
2  Black  3705.DAT  Technic Axle  4 
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5  Black  32073.DAT  Technic Axle  5 
1  Black 3706.DAT  Technic Axle  6 
9  Black  3707.DAT  Technic Axle  8 
2  Black  3737.DAT  Technic Axle 10 
2  Black  3708.DAT  Technic Axle 12 
2 Light-Gray 6538.DAT Technic Axle Joiner 
4  Light-Gray 3749.DAT  Technic Axle Pin 
2  Green  32064.DAT  Technic Brick  1 x  2 with Axlehole 
9  Black  3700.DAT  Technic Brick  1 x  2 with Hole 
4  Yellow  3700.DAT  Technic Brick  1 x  2 with Hole 
8 Black  3701.DAT  Technic Brick  1 x  4 with Holes 
2  Green  3701.DAT  Technic Brick  1 x  4 with Holes 
3  Black  3894.DAT  Technic Brick  1 x  6 with Holes 
2 Black 3702.DAT Technic Brick  1 x  8 with Holes 
2  Black       3895.DAT  Technic Brick  1 x 12 with Holes 
4  Black       3703.DAT  Technic Brick  1 x 16 with Holes 

27  Light-Gray 3713.DAT  Technic Bush 
9  Light-Gray 4265C.DAT  Technic Bush 1/2 Smooth 
1  Light-Blue 32137.DAT  Technic Connector Block  3 x  2 x  2 
2  Light-Gray 32039.DAT  Technic Connector with Axlehole 
2  Dark-Gray  6573.DAT  Technic Differential New 
2 Yellow  75.DAT  Technic Flex-System Hose 
4 Light-Gray 3647.DAT Technic Gear 8 Tooth 
6  Light-Gray 6589.DAT  Technic Gear 12 Tooth Bevel 
4 Light-Gray 4019.DAT Technic Gear 16 Tooth 
7  Light-Gray 3648.DAT  Technic Gear 24 Tooth 
3  Light-Gray 6632.DAT  Technic Liftarm  1 x  3 
2  Light-Gray 2825.DAT  Technic Liftarm  1 x  4 
2  Black  6629.DAT  Technic Liftarm  1 x  9 Bent 
2  Light-Gray 3673.DAT  Technic Pin 
1  Yellow  32136.DAT  Technic Pin  3L Double 
1  Dark-Gray  4274.DAT  Technic Pin 1/2 
3  Black  6558.DAT  Technic Pin Long with Friction 
7  Black 4459.DAT  Technic Pin with Friction 
2  Light-Gray 3738.DAT  Technic Plate  2 x  8 with Holes 
2  Light-Gray 6553.DAT  Technic Pole Reverser Handle 

    1  Blue        [created] Technic Rubber Band 
2 White [created] Technic Rubber Band 

    1  Yellow      [created] Technic Rubber Band 
    1  Light-Gray 4185.DAT  Technic Wedge Belt Wheel 
    2  Black       6578.DAT  Tire 30.4 x 14 VR 
    2  White       2994.DAT  Wheel 30.4 x 14 VR 
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Table 3: Hardware Building Instructions 

Step Model Parts Required / Instructions

1 

 
½ bushing 

Dual-Differential: 
1 - Technic Axle  5 
1 - Technic Bush ½ Smooth 
1 - Technic Gear 24 Tooth  
1 - Technic Brick  1 x 16 with Holes 
 
Slide a ½ bushing about 1 ½ bushing’s 
width down a 5-axle. Place a 24t gear 
on the other end and insert the axle 
into the 6th hole (from the left) of the 1 
x 16 technic brick. 

2a 

 
12t bevel gear 

1 - Technic Differential New 
3 - Technic Gear 12 Tooth Bevel 
2 - Technic Axle  8 
 
Place a 12t bevel gear onto the small 
axle within the differential. 

2b 

 

Holding a second 12t bevel gear 
within the differential, slide an axle 
through the 2nd gear’s hole. 

2c 

 

Repeat for the other side of the 
differential. 
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3 

 

1 – Technic Gear 24 Tooth 
 
Note that the differential shell has two 
gears built onto the shell, a 24t gear 
and a 16t gear. Slide a 24t gear onto 
the axle closest to the 16t gear. Then, 
slide this axle into the 1 x 16 brick, to 
the right of the existing 24t gear, so 
that the teeth of the two 24t gears 
mesh. 

4 

 

Turn Differential: 
1 - Technic Differential New 
3 - Technic Gear 12 Tooth Bevel 
2 - Technic Axle  8 
1 - Technic Gear 24 Tooth 
 
Build a second differential using steps 
2 a-c above. Then, slide a 24t gear 
onto the axle closest to the 24t gear on 
the differential shell. Finally, insert 
this axle into the 1 x 16 brick, to the 
left of the first 24t gear, so that the 
gear teeth mesh. 

5 

  
 Axle Pin 

4 – Technic Gear 16 Tooth 
2 – Technic Axle Pin 
 
Slide a 16t gear onto each differential 
axle. Then insert an axle pin into the 2 
remaining 16t gears. 
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6 

 

1 - Technic Brick  1 x 16 with Holes 
 
Slide a second 1 x 16 technic brick 
onto the two differential axles. Ensure 
that the holes align with the first 1 x 
16 technic brick. As the 1 x 16 technic 
brick nears the differentials, snap the 
two 16t gears with axle pins into 
place, being sure that the teeth of the 
four 16t gears mesh with their 
neighbor’s when the axle is fully 
inserted. 

7 

 

Wheels and Support Frame: 
2 - Technic Brick  1 x 16 with Holes 
 
Place two 1 x 16 technic bricks onto 
the assembly as shown. 

8 

 

Friction Pin - Long 

1 - Technic Bush ½ Smooth 
1 – Technic Pin Long with Friction 
 
Slide the ½ bushing onto the linear 
(right) differential as shown. Then, 
insert a long friction pin in the hole 
that is between the two center 16t 
gears. Note that the friction pin has 
one side with a single groove and the 
other has two. If you insert the side 
with two groves toward the 1 x 16 
brick, only push the pin in far enough 
so it clicks into the first groove. 
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9 

 

Plate 2 x 2 with holes 

1 – Plate  2 x  2 with Holes 
1 – Tire 30.4 x 14 VR 
1 – Wheel 30.4 x 14 VR 
 
Place the tire onto the wheel. Then, 
insert the wheel assembly onto the 
linear differential axle. 
 
Next, slide a 2 x 2 plate, stud side up, 
onto the long friction pin. Ensure the 
plate only goes as far as the first 
groove on the pin. 

10 

  Bushing 

1 – Technic Bush 
 
Slide a full bushing onto the linear 
differential axle. 

11 

 
 Friction Pin 

1 – Technic Pin with Friction 
1 – Technic Bush ½ Smooth 
 
Insert a friction pin into the other hole 
on the 2 x 2 plate. 
 
Slide a ½ bushing onto the linear 
differential axle. 

12 

 

1 – Technic Brick 1 x 12 with Holes 
 
Slide the 1 x 12 technic brick over the 
axles and lock into place using the 
friction pin and the bottom of the two 
1 x 16 technic bricks. 
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13 

 

1 – Technic Bush 
1 – Technic Bush ½ Smooth 
 
Rotate the model to work on the other 
axles. 
 
Slide a ½ bushing onto the linear 
differential axle (now on the left). 
 
Slide a full bushing onto the axle that 
passes through the central 24t gear. 

14 

1 – Plate  2 x  2 with Holes 
1 – Tire 30.4 x 14 VR 
1 – Wheel 30.4 x 14 VR 
 
Place the tire onto the wheel. Then, 
insert the wheel assembly onto the 
linear differential axle. 
 
Next, slide a 2 x 2 plate onto the 
center axle. 

15 

 

 

1 – Technic Bush 
 
Place a technic bushing onto the axle 
with the wheel. 
 
 

16 

 

1 – Technic Bush ½ Smooth 
1 – Technic Pin with Friction 
 
Slide a ½ bushing over the wheel axle 
and insert a friction pin into the hole 
in the 2 x 2 plate. 

17 

 

1 – Technic Brick 1 x 12 with Holes 
 
Slide the 1 x 12 brick over the axles as 
shown. Secure it in place with the 
friction pin and the ends of the 1 x 16 
bricks. 
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18 

Rear Support: 
2 – Technic Brick 1 x 2 with Hole 
1 – Technic Brick 1 x 2 with Axlehole 
 
Place the three bricks in the positions 
shown. The holes in the three bricks 
should line up with the last hole in the 
1 x 12 brick. 

19 

 

1 – Technic Axle 5 
 
Slide the axle into the hole to secure 
the pieces.  It should pass fully 
through the 1 x 12 brick, the three 1 x 
2 bricks, and the main 1 x 16 brick. 

20 

 

2 – Technic Brick 1 x 2 with Hole 
1 – Technic Brick 1 x 2 with Axlehole 
1 – Technic Axle 5 
 
Repeat Steps 18 and 19 to complete 
the rear support assembly on the other 
side. 

21 

 

1 – Technic Pin with Friction 
 
Insert the friction pin into the center 
hole of the rear 1 x 16 brick. 

22 

 

1 – Technic Brick 1 x 2 with Hole 
1 – Brick 2 x 2 
 
Place the 1 x 2 brick onto the friction 
pin. Connect the 2 x 2 brick to the 1 x 
2 brick and the rear 1 x 16 brick, as 
shown. 

23 

Boat 2 x 2 Stud 

1 – Plate 2 x 10 
1 – Plate 2 x 2 
1 – Boat 2 x 2 Stud 
 
Center the 2 x 10 plate on the 2 x 2 
brick and connect. The plate should 
connect with 1 pin into each 1 x 16 
brick and the first 1 x 2 brick. 
 
Next, place the 2 x 2 plate onto the 2 x 
10 plate, directly underneath the 2 x 2 
brick. Finally, place the 2 x 2 boat 
stud onto the 2 x 2 plate. 
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24 

Front Support and Kneeling Skids: 
2 – Technic Pin with Friction 
 
Rotate the model around to the front. 
Insert 2 friction pins into the forward 
1 x 16 brick as shown 

25 

 

1 – Technic Brick 1 x 6 with Holes 
 
Slide the 1 x 6 technic brick onto the 
two friction pins. The brick should be 
centered between the two 1 x 16 
technic bricks. 

26 

 
 

 

1 – Technic Brick 1 x 6 with Holes 
1 – Plate 1 x 8 
1 – Technic Pin ½ 
 
Place the 1 x 6 technic brick between 
the two 1 x 16 technic bricks and 
attach it to the bottom of the 1 x 6 
technic brick added in Step 25. Secure 
the assembly using the 1 x 8 plate to 
connect the 1 x 6 technic brick and 1 x 
16 technic bricks. 
 
Finally, insert the long end of the ½ 
pin into the center hole of the bottom 
1 x 6 technic brick. 

27 

1 – Technic Pin with Friction 
 
Insert a friction pin into the 1st hole of 
the 1 x 16 technic brick (supporting 
the axles). 

28 

 

1 – Technic Brick 1 x 2 with Hole 
1 – Plate 2 x 2 with Holes 
 
Place the 1 x 2 brick, stud-side up, 
onto the friction pin. Secure the pieces 
with the 2 x 2 plate. 
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29 

 

1 – Technic Pin with Friction 
1 – Technic Brick 1 x 2 with Hole 
1 – Plate 2 x 2 with Holes 
 
Repeat Steps 27 and 28 for the front 
of the other 1 x 16 technic brick. 

30 

 

Motor and Gear Support: 
3 – Technic Brick 1 x 4 with Holes 
 
Place the three 1 x 6 technic bricks 
along the top of the 1 x 16 technic 
brick as shown. 

31 

 

1 – Brick 2 x 4 
 
Place the 2 x 4 brick on top of the 2 x 
2 plate so that it joins the plate and the 
1 x 16 technic brick. Be sure that the 2 
x 2 plate is studs-side up. 

32 

 

2 – Brick 1 x 2 
 
Place one 1 x 2 brick on top of the 2 x 
4 brick as shown. Place the other 
along side the rear 1 x 16 technic 
brick. 

33 

 

1 – Plate 1 x 8 
1 – Plate 2 x 4 
 
Place the 1 x 8 plate on top of the 1 x 
16 technic brick so that 2 studs 
overhang from the front. 
 
Place the 2 x 4 plate along the back as 
shown. 
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34 

 

3 – Technic Brick 1 x 4 with Holes 
1 – Brick 2 x 4 
2 – Brick 1 x 2 
 
Rotate the model to the other side and 
insert the three 1 x 4 bricks similar to 
Step 30. Attach the 2 x 4 brick and the 
two 1 x 2 bricks similar to Steps 31 
and 32. However, note that the 1 x 2 
brick on top of the 2 x 4 brick goes 
closer to the wheel on this side. 

35 

 

1 – Plate 1 x 8 
1 – Plate 2 x 4 
 
Repeat the placements of the 1 x 8 
plate and the 2 x 4 plate for this side 
similar to Step 33. 

36 

 

2 – Slope Brick 45 2 x 1 Inverted 
 
Place the two inverted slope bricks 
onto the overhanging edges of the 1 x 
8 plates attached in Steps 33 and 35. 

37 

 

 

Main Gear Train Assembly: 
1 – Technic Brick 1 x 8 with Holes 
1 – Technic Pin Long with Friction 
 
Place the short end of the long friction 
pin into the 2nd hole of the 1 x 8 
technic brick, as shown. 

38 

 

2 – Technic Brick 1 x 4 with Holes 
 
Slide the center holes of the two 1 x 4 
technic bricks onto the friction pin. 

39 

 

4 – Technic Axle 8 
 
Place an axle into every other hole, as 
shown. The ends of the axles should 
pass through and be flush with the 1 x 
8 technic brick. 
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40 

 

2 – Technic Bush 
 
Place a bushing onto the two longer 
pieces of axle. 

41 

 

1 – Technic Gear 24 Tooth 
1 – Technic Gear 8 Tooth 
 
Slide the 24t gear onto the outermost , 
longer axle. Slide the 8t gear onto the 
axle next to it. Be sure that gear teeth 
mesh properly. 
 

42 

 

3 – Technic Bush 
1 – Technic Gear 24 Tooth 
 
Place the 24t gear onto the axle with 
the 8t gear. Slide bushings onto the 
other 3 axles. Be sure that the 
bushings do not interfere with the 24t 
gear’s rotation. 
 

43 

 

3 – Technic Bush 
1 – Technic Gear 24 Tooth 
 
Place the 24t gear onto the axle to the 
left of the last 24t gear. Slide bushings 
onto the other 3 axles. Be sure that the 
bushings do not interfere with the 24t 
gear’s rotation. 
 

44 

 

 

1 – Technic Gear 24 Tooth 
1 – Technic Gear 8 Tooth 
1 – Technic Brick 1 x 4 with Holes 
 
Place the 24t gear onto the last axle 
containing no gears. Place the 8t gear 
onto the axle next to it, being sure that 
the gears mesh properly. 
 
Slide the 1 x 4 technic brick onto the 
last two axles. 
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45 

 

 

1 – Technic Brick 1 x 4 with Holes 
1 – Technic Pin Long with Friction 
2 – Technic Bush 
 
Slide the 1 x 4 technic brick onto the 
right-most axles and secure the two 1 
x 4 bricks with the long end of the 
long friction pin. 
 
Place a bushings onto each of the 
other axles, in front of the 24t and 8t 
gears. 

46 

 

1 – Technic Brick 1 x 8 with Holes 
 
Complete the main gear train 
assembly by sliding the 1 x 8 technic 
brick onto the axles, locking it into 
place with the long friction pin. 

47a 

 

Insert the completed gear train 
assembly onto the frame. 

47b 

 

When properly inserted, the 1 x 8 
technic bricks will rest along the 1 x 
16 technic brick that support the axles, 
between the 1 x 8 and 2 x 4 plates 
placed in Steps 33 and 35. This will 
align the two outermost 24t gears to 
mesh with the 16t gears on the two 
differentials. 

48 

 

Motor / Rotation Sensor Assembly: 
1 – Electric Technic Mini-Motor 9V 
1 – Technic Axle Joiner 
1 – Technic Axle 5 
 
Place an axle joiner onto the 9V 
motor’s shaft. Insert a 5 axle into the 
other end of the axle joiner. 
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49 

 

1 – Technic Gear 8 Tooth 
1 – Technic Bush 
 
 
Slide an 8t gear onto the 5 axle. Next, 
slide a bushing onto the axle. 

50 

 

1 – Electric Rotation Sensor 
 
Place the rotation sensor onto the end 
of the axle in the direction shown. 

51a 

 

Insert the completed motor / rotation 
sensor assembly onto the model as 
shown. 

51b 

 

Note that when placed properly, the 8t 
gear on the motor shaft aligns with 
one of the mid-set 24t gears in the 
gear train. Further, the rotation sensor 
sits directly on top of two 1 x 4 
technic gears used for the gear train 
assembly. 

51c 

 

Further, note how the 1 x 2 brick near 
the wheel supports the motor on its 
right side. 
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52 

Repeat Steps 49 – 51 for the second 
motor / rotation sensor assembly. 

53 

 

Light Sensor Assembly: 
1 – Slope Brick 33 3 x 2 Inverted 
 
Attach the 3 x 2 inverted slope brick 
to the front 1 x 6 technic brick. The 
slope should be facing backward, over 
the geartrain. 

54 

 

1 – Electric Light Sensor 
1 – Plate 2 x 2 
1 – Plate 1 x 2 
 
Place the light sensor on top of the 3 x 
2 inverted slope brick with the sensor 
facing away from the gear train. 
 
Place the 2 x 2 plate and the 1 x 2 
plate on the light sensor as shown. 

55 

 

 

1 – Slope Brick 33 3 x 2 Inverted 
1 – Plate 1 x 3 
 
Place the 3 x 2 inverted slope brick on 
top of the forward edge of the light 
sensor with the slope going away from 
the gear train. 
 
Place the 1 x 3 plate on top of the 2 x 
2 and 1 x 2 plates, as shown. The hole 
created on the other side of the 1 x 3 
plate will be used to run the wire from 
the light sensor to the RCX. 
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56 

 

RCX Support: 
2 – Brick 2 x 2 
 
Stack the 2 x 2 bricks on top of one 
another. Place them at the rear of the 
model, on top of the middle two studs 
of the 1 x 16 technic brick and the 1 x 
2 brick placed in Step 22. 

57 

 

1 – Slope Brick 33 3 x 2 Inverted 
1 – Slope Brick 45 2 x 2 Inverted 
 
Place the 3 x 2 inverted slope brick on 
the forward edge of the 2 x 2 brick 
placed in the last step. The slope 
should be facing toward the gear train. 
 
Place the 2 x 2 inverted slope brick on 
the rear edge. 
 

58 

 

1 – Plate 6 x 10 
1 – Brick 2 x 4 
 
Looking down at the top of the model, 
place the 6 x 10 plate as shown. The 
plate should rest fully on top of the 
rotation sensors, the 1 x 3 plate placed 
in Step 55, and on the first row of 
studs of the 3 x 2 inverted slope brick 
placed in the last step. 
 
Then, place the 2 x 4 brick behind it, 
on top of the 2 x 2 inverted slope brick 
and remaining two rows of studs of 
the 3 x 2 inverted slope brick. 
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59 

1 – Plate 2 x 4 
2 – Plate 1 x 2 
1 – Plate 1 x 6 
 
Place the 2 x 4 plate on the 3 x 2 
inverted slope brick that rests on top 
of the light sensor. One row should 
overlap onto the 6 x 10 plate placed in 
the last step. 
 
Place the two 1 x 2 plates to either 
side, on the forward edge of the 6 x 10 
plate, as shown. 
 
Place the 1 x 6 plate along the trailing 
edge of the 6 x 10 plate. 
 

60 

 

1 – Plate 1 x 2 with Door Rail 
 
Insert the rail end of the door rail plate 
into the upper support slot on the 
right-hand side of one motor. 

61 

 

1 – Plate 1 x 2 with Door Rail 
 
Turn the model around and repeat for 
the other motor. 

62 

 

2 – Plate 1 x 2 
 
From the top again, place a 1x 2 plate 
onto each door rail plate placed in 
Steps 60 and 61. 
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63 

 

2 – Technic Plate 2 x 8 with Holes 
 
Place the two 2 x 8 plates across 6 x 
10 plate, as shown. 
 
Each 2 x 8 plate should start from the 
edge of the 6 x 10 plate, in front of the 
center of a motor, and lock into the 
motor / door rail assembly on the 
other side.  

64 

 

2 – Plate 1 x 10 
1 – Plate 2 x 10 
1 – Plate 2 x 4 
 
Place the 1 x 10 plates along the 
edges, as shown. 
 
The 2 x 10 should be placed down the 
center of the RCX support assembly. 
 
The 2 x 4 plate will cover the 
remaining three studs of the 2 x 4 
plate placed in Step 59 and should 
overhang by 1 stud row. 
 

65 

 

1 – Electric Mindstorms RCX 
 
Place the RCX onto the model. It 
should rest evenly over the 2 x 10 
plate. 
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66 

 

Touch Sensor Assembly: 
2 – Technic Brick 1 x 2 with Hole 
1 – Brick 1 x 2 
 
Place the two 1 x 2 technic bricks with 
holes side by side up against the RCX. 
The holes should face to the sides. 
 
Place the 1 x 2 brick in front of them, 
as shown. 

67 

 

3 – Plate 1 x 2 
 
Place the three 1 x 2 plates as shown 
to lock the 1 x 2 bricks from the 
previous step into place. 

68 

 

1 – Electric Touch Sensor Brick 3 x 2 
2 – Plate 1 x 2 
1 – Electric connector 
 
Place the touch sensor on top of the 1 
x 2 plates installed in the last step. 
 
Stack the two 1 x 2 plates and place 
them on top of the touch sensor, 
against the RCX, as shown. 
 
Place one end of an electrical 
connector onto the touch sensor now. 
 

69 

 

2 – Slope Brick 45 2 x 1 Inverted 
1 – Technic Axle 6 
 
Place the two 2 x 1 inverted slope 
bricks on top of the 1 x 2 plate 
installed last step. The slopes should 
face forward. 
 
Insert a 5 axle into the axle hole in the 
touch sensor. 
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70 

 

4 – Technic Bush 
 
Slide two bushings onto each end of 
the 5 axle installed last step. 

71 

 

Trap Motor Assembly: 
2 – Plate 2 x 2 Corner 
 
Place the two 2 x 2 corner plates on 
top of the RCX as shown. 

72 

 

 

1 – Technic Axle 10 
3 – Technic Bush 
2 – Technic Brick 1 x 2 with Hole 
 
Assemble the bushings and 1 x 2 
bricks on the 10 axle as shown. 
 

73 
 

2 –Plate 2 x 2 Corner 
2 – Plate 1 x 2 with Door Rail 
 
Place the plates on the assembly as 
shown. A corner piece and a rail each 
go on top and on the bottom, in the 
same position. 
 

74 

 

2 – Plate 1 x 4 
 
Attach the 1 x 4 plates to the top and 
bottom of the assembly, as shown. 

75 

 

1 – Electric Technic Mini-Motor 9V 
 
Slide the door rail plates of into the 
motor supports. 
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76 

 

2 – Plate 2 x 2 
 
Affix the motor to the assembly using 
the two 2 x 2 plates on the top and 
bottom, as shown. 

77 

 

 

1 – Technic Wedge Belt Wheel 
2 – Electric Technic Micromotor 
Pulley 
1 – Technic Rubber Band Blue 
 
Slide a wedge belt wheel onto the 10 
axle and follow it with a micromotor 
pulley. 
 
Slide a micromotor pulley onto the 
motor shaft. 
 
Connect the micromotor pulley on the 
motor shaft and the wedge belt wheel 
with a blue technic rubber band. 
 
 

78 

 

Place the completed trap motor 
assembly onto the RCX, as shown. 
 
The curve on the bottom of the motor 
should rest between the two corner 
plates installed in Step 71 and the two 
2 x 1 inverted slope bricks installed in 
Step 69 should support the front of the 
motor. 
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79 

 

Bumper Assembly: 
1 – Technic Axle 4 
 
Insert the 4 axle into the holes in the 1 
x 2 bricks installed in Step 66. 

80 

 

1 – Technic Lift Arm 1 x 9 Bent 
1 – Technic Axle 4 
4 – Technic Bush ½ Smooth 
 
Slide the lift arm onto one end of the 4 
axle installed in the last step. The axle 
hole on the smaller end of the lift arm 
should be used. 
 
Place the 4 half bushings onto the 
center of the other 4 axle. Insert this 
axle into the hole at the corner of the 
bent lift arm. 
 

81 

 

1 – Technic Lift Arm 1 x 9 Bent 
 
Slide the technic lift arm onto the two 
4 axles. 
 
Ensure that the four half bushings 
installed in the last step are in a 
position to fully depress the touch 
sensor button. It is usually most 
effective when the edges of two half 
bushing are centered on the touch 
sensor. 
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82 

 
 Technic Pin 

1 – Technic Axle 12 
2 – Technic Pin 
 
Insert the 12 axle through the top two 
axle holes of the 1 x 9 technic lift 
arms. Center the axle and be sure that 
it rests on top of the 10 axle of the trap 
motor assembly. 
 
Next, place the two technic pins into 
the second hole of each technic lift 
arm, the hole right above the axle 
installed in Step 79. 

83 

 
 Liftarm 1 x 4 

2 – Technic Liftarm 1 x 4 
 
Slide a liftarm onto each end of the 12 
axle, as shown. They should be at 
least a plate’s width in from the ends. 

84 

 
 Connector 

1 - Technic Axle 12 
2 – Technic Connector with Axlehole 
2 – Technic Flex-System Hose 
 
Slide the 12 axle through the end 
axleholes of the 1 x 4 liftarms 
installed in the last step. 
 
Place a connector with axlehole on 
each end of the 12 axle. 
 
Insert a flex-system hose into each 
connector. 
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2 – Technic Rubber Band White 
 
Place one rubber band on each side of 
the bumper, connecting the technic 
pin from Step 82 to the technic bush 
from Step 70. 
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Trap Arm Assembly: 
1 – Plate 1 x 6 
1 – Technic Brick 1 x 6 with Holes 
 
Place the 1 x 6 technic brick on top of 
the 1 x 6 plate. 
 
Install this assembly on the model’s 
right side, as shown. 
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2 – Technic Axle Pin 
 
Insert an axle pin into the center hole 
of the 1 x 6 technic brick installed in 
the last step. 
 
Insert the other axle pin into the hole 
in the 1 x 4 technic brick immediately 
beneath. 
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 Liftarm 1x3 Double Pin 

1 – Technic Liftarm 1 x 3 
1 – Technic Pin 3L Double 
 
Slide the 1 x 3 liftarm over the two 
axle pins installed in the last step. 
 
Insert the 3L double pin into the two 
holes of the 1 x 6 technic brick as 
shown.  
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 Connector  Block 

1 – Technic Connector Block 3 x 2 x 2 
1 – Technic Axle 10 
5 – Technic Bush 
 
Place the connector block on the 
double pin installed in the step above. 
Slide the 10 axle through the top hole 
of the connector block, as shown. 
 
Place two bushings on the back of the 
axle and three on the front, as shown. 
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1 – Technic Pole Reverser Handle 
1 – Technic Angle Connector #5 
1 – Technic Axle 8 
 
Slide the pole reverser handle onto the 
front end of the 10 axle from the 
previous step. 
 
Next, place the #5 angle connector on 
the end of the pole reverser handle, as 
shown. 
 
Then, place the 8 axle into the other 
end of the #5 angle connector. 
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2 – Technic Liftarm 1 x 3 
1 – Technic Pole Reverser Handle 
1 – Technic Angle Connector #5 
 
Slide the two liftarms onto the 8 axle 
from the previous step, as shown. 
 
Slide the pole reverser handle onto the 
8 axle with the axle portion facing 
downward. 
 
Place the #5 angle connector onto the 
pole reverser handle, as shown. 

Pole Reverser 
Handle

#5 Angle 
Connector
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1 – Technic Rubber Band Yellow 
 
Connect a yellow technic rubber band 
from the bushing on the trap arm to 
the micromotor pulley installed in 
Step 77. 

93 

Arm Piece with Pin and 2 Fingers 

Side Guards: 
1 – Arm Piece with Pin and 2 Fingers 
 
Slide the armpiece pin into the first 
hole of the 1 x 16 technic brick. 
 
The slots between the two fingers 
should be sideways. 
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1 – Grab Jaw Holder 
 
Snap the three fingers of the grab jaw 
holder around the two fingers of the 
arm piece installed above. 
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2 – Grab Jaw 
 
Snap the two grab jaws into the grab 
jaw holder installed in the last step. 

Grab Jaw 
Holder 

Grab Jaw  
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1 – Arm Piece with Pin and 2 Fingers 
1 – Grab Jaw Holder 
2 – Grab Jaw 
 
Repeat Steps 93 – 95 for the other 
side. 
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RCX Rear Support: 
3 – Plate 1 x 2 
1 – Brick 1 x 2 
2 – Technic Brick 1 x 2 with Hole 
1 – Plate 2 x 4 
 
Stack the three plates and three bricks 
as shown. 
 
Tie them into the RCX using the 2 x 4 
plate as shown. 

 

The robot model is now complete. 
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The table below, Table 4, lists the port configurations from the RCX to the individual 
motors and sensors. If the motor turns the wrong way during operation, rotate one of the 
plugs connected to that motor 180 degrees. 

 

Table 4: RCX Port Configuration 

Port Motor / Sensor
A Trap Motor 
B Linear Motor (on the left, closest to the 

front) 
C Turn Motor 
1 Turn Rotation Sensor  (closest to the back) 
2 Light Sensor / Touch Sensor (ganged) 
3 Linear Rotation Sensor 
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APPENDIX F 

CODE FOR THE REACTIVE ROBOTIC ARCHITECTURE 
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CODE FOR THE REACTIVE ROBOTIC ARCHITECTURE 

The code for the reactive robotic architecture is split into multiple files with each file 

encompassing a specific behavior. A subsumption architecture is used to coordinate the 

individual behaviors. 

//////////////////////////////////////////////////////////////////// 
// File:   Reactive.nqc 
// Version: 1.1.1 
// Author: Gary R. Mayer 
// Date: 24 August 2003 
// Project: SIUE CIS 595 - Master's Thesis Project 
// 
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL 
//          ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM 
// 
// Description: This document provides the main task control for a 
// reactive robot control architecture. Individual robot behaviors 
// are coded in their respective files. 
// 
// Arbitration between active states is managed by an arbitration  
// subfunction within main() 
// 
// Logic is based upon the basic Finite State Acceptor Diagram and 
// Suppression Arbitration Networks. 
// 
// The code is written in Not Quite C (NQC), a C-like programming 
// language that resides on top of the RCX brick's default firmware. 
// 
// RCX firmware version 2.0;  NQC version 2.5 R1 
//////////////////////////////////////////////////////////////////// 
 
 
#include "RGlobals.nqc"   // global constants and variables 
#include "RForage.nqc"   // Forage behavior code 
#include "RAcquire.nqc"             // Acquire-Target behavior code 
#include "RReturn.nqc"   // Return-home behavior code 
#include "RRelease.nqc"   // Release-target behavior code 
#include "RAvoid.nqc"   // Avoid-obstacle behavior code 
 
 
task main() 
{ 
 int behavior_command; 
 
 // clear display 
 SetUserDisplay(0, 0); 
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 // initialize input / output ports 
 Off(DRIVE_MOTOR); 
 Off(TURN_MOTOR); 
 SetPower(DRIVE_MOTOR, OUT_FULL); 
 SetPower(TURN_MOTOR, OUT_FULL); 
 SetSensorType(LIGHT_SENSOR, SENSOR_TYPE_LIGHT); 
 SetSensorMode(LIGHT_SENSOR, SENSOR_MODE_PERCENT); 
 SetSensor(DRIVE_ENCODER, SENSOR_ROTATION); 
 SetSensor(TURN_ENCODER, SENSOR_ROTATION);     
 SetTxPower(TX_POWER_LO); // set IR output level 
 SetUserDisplay(0, 0);  // clear display 
 
 // Calibrate ambient and target light values. 
 // Use bumper on light sensor as user input. 
 PlaySound(SOUND_DOUBLE_BEEP); 
 while ( LIGHT_SENSOR < OBSTACLE_THRESHOLD ); 
 while ( LIGHT_SENSOR > OBSTACLE_THRESHOLD ); 
  
 PlaySound(SOUND_CLICK); 
 CalibrateLight(); 
 gAmbientLevel = gLightValue + LIGHT_BUFFER_AMB; 
 SetUserDisplay(gAmbientLevel, 0); 
 
 PlaySound(SOUND_DOUBLE_BEEP); 
 while ( LIGHT_SENSOR < OBSTACLE_THRESHOLD ); 
 while ( LIGHT_SENSOR > OBSTACLE_THRESHOLD ); 
 
 PlaySound(SOUND_CLICK); 
 CalibrateLight(); 
 gTargetThreshold = gLightValue - LIGHT_BUFFER_TGT; 
 SetUserDisplay(gTargetThreshold, 0); 
 
 PlaySound(SOUND_DOUBLE_BEEP); 
 while ( LIGHT_SENSOR < OBSTACLE_THRESHOLD ); 
 while ( LIGHT_SENSOR > OBSTACLE_THRESHOLD ); 
 
 // Ensure disparity exists btwn ambient and target values. 
 if ( gTargetThreshold - gAmbientLevel < TARGET_DIFF ) 
 { 
  PlaySound(SOUND_DOWN); 
  return; 
 } 
 
 Wait(WAIT_TIME); 
 gLightValue = gAmbientLevel; 
 SetUserDisplay(gLightValue, 0); 
 
 // Start default robot behaviors 
 start avoid_task; 
 start release_task; 
 start return_task; 
 start acquire_task; 
 start forage_task; 
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 // Arbitrate robot shared resources. 
 while (1) 
 { 
  behavior_command = COMMAND_NONE; 
  gLightValue = LIGHT_SENSOR; 
  gDriveEncoderTicks = DRIVE_ENCODER; 
  gTurnEncoderTicks = TURN_ENCODER; 
  gIR_Message = Message(); 
 
  if ( gAvoidCommand != COMMAND_NONE ) 
  { 
   behavior_command = gAvoidCommand; 
   SetUserDisplay(1, 0); 
  } 
 
  else if ( gReleaseCommand != COMMAND_NONE ) 
  { 
   behavior_command = gReleaseCommand; 
   SetUserDisplay(2, 0); 
  } 
 
  else if ( gReturnCommand != COMMAND_NONE ) 
  { 
   behavior_command = gReturnCommand; 
   SetUserDisplay(3, 0); 
  } 
 
  else if ( gAcquireCommand != COMMAND_NONE ) 
  { 
   behavior_command = gAcquireCommand; 
   SetUserDisplay(4, 0); 
  } 
 
  else if ( gForageCommand != COMMAND_NONE ) 
  { 
   behavior_command = gForageCommand; 
   SetUserDisplay(5, 0); 
  } 
 
  ExecuteCommand(behavior_command); 
 } 
 
}  // end task main() 
 
void ExecuteCommand(int& behavior_command) 
{ 
 switch (behavior_command) 
 { 
 case COMMAND_STOP: 
  Off(DRIVE_MOTOR); 
  Off(TURN_MOTOR); 
  Float(TRAP_MOTOR); 
  break; 
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 case COMMAND_FORWARD: 
  Off(TURN_MOTOR); 
  Float(TRAP_MOTOR); 
  OnFwd(DRIVE_MOTOR); 
  break; 
 
 case COMMAND_REVERSE: 
  Off(TURN_MOTOR); 
  Float(TRAP_MOTOR); 
  OnRev(DRIVE_MOTOR); 
  break; 
 
 case COMMAND_LEFT: 
  Off(DRIVE_MOTOR); 
  Float(TRAP_MOTOR); 
  OnRev(TURN_MOTOR); 
  break; 
 
 case COMMAND_RIGHT: 
  Off(DRIVE_MOTOR); 
  Float(TRAP_MOTOR); 
  OnFwd(TURN_MOTOR); 
  break; 
 
 case COMMAND_CAPTURE: 
  Off(DRIVE_MOTOR); 
  Off(TURN_MOTOR); 
  OnFwd(TRAP_MOTOR); 
  Wait(TRAP_TIME); 
  Float(TRAP_MOTOR); 
  break; 
 
 case COMMAND_RELEASE: 
  Off(DRIVE_MOTOR); 
  Off(TURN_MOTOR); 
  OnRev(TRAP_MOTOR); 
  Wait(TRAP_TIME); 
  Float(TRAP_MOTOR); 
  break; 
 
 case COMMAND_RESET_DRIVE_ENCODER: 
  ClearSensor(DRIVE_ENCODER); 
  gDriveEncoderTicks = DRIVE_ENCODER; 
  break; 
 
 case COMMAND_RESET_TURN_ENCODER: 
  ClearSensor(TURN_ENCODER); 
  gTurnEncoderTicks = TURN_ENCODER; 
  break; 
 
 case COMMAND_RESET_MESSAGE: 
  ClearMessage(); 
  break; 
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 deafult: 
  break; 
 } 
} 
 
 
sub CalibrateLight() 
{ 
 int i; 
 int avg = 0; 
 int num_times = 15; 
 
        
 for ( i = 0; i < num_times; i++ ) 
 { 
  avg = avg + LIGHT_SENSOR; 
  Wait(WAIT_TIME); 
 } 
 
 avg = avg / num_times; 
 
 gLightValue = avg; 
} 
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//////////////////////////////////////////////////////////////////// 
// File:   RGlobals.nqc 
// Version: 1.1.2 
// Author: Gary R. Mayer 
// Date: 26 August 2003 
// Project: SIUE CIS 595 - Master's Thesis Project 
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL 
//          ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM 
// 
// Description: This file provides the global constants and  
// variables used throughout the reactive robot control  
// architecture. 
// 
// RCX firmware version 2.0;  NQC version 2.5 R1 
//////////////////////////////////////////////////////////////////// 
 
/* *** PREPROCESSOR DEFINITIONS *** */ 
/* Motor name assignments. */ 
#define    TRAP_MOTOR              OUT_A 
#define    DRIVE_MOTOR             OUT_B 
#define    TURN_MOTOR              OUT_C 
 
/* Sensor name assignments. */ 
#define    TURN_ENCODER         SENSOR_1       
#define    LIGHT_SENSOR         SENSOR_2 
#define    DRIVE_ENCODER        SENSOR_3 
 
/* Drive encoder ticks in 10" grid length. */ 
#define    GRID_LENGTH_TICKS         252 
 
/* Turn encoder ticks in 90 degree turn.  */ 
#define    TURN_LENGTH_TICKS          64 
 
/* Units of 10ms to wait to allow trap arm to raise or lower. */ 
#define    TRAP_TIME                 100 
 
/* Units of 10ms to wait for arbitrator to manage command request. */ 
#define    WAIT_TIME                  45 
 
#define    RESPONSE_TIME              50 
 
/* Note: The rotation sensor (encoder) provides 16 ticks per    */ 
/* rotation. Both the drive and turn encoders are geared to the */ 
/* motor with a 1:1 ratio. The encoders are geared down to the  */ 
/* wheel axle with a 1:6 ratio. Thus, every revolution of the   */ 
/* wheel yields 96 ticks on the encoder.                        */ 
 
/* LIGHT VALUES (0 - 100 scale) */ 
/*   Higher values indicate brighter viewed source. */ 
 
/* Value indicates when a touch sensor is considered impacted. */ 
#define    OBSTACLE_THRESHOLD        100 
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/* Buffer for ambient threshold.                              */ 
#define    LIGHT_BUFFER_AMB            5 
      
/* Buffer for target threshold.                               */ 
#define    LIGHT_BUFFER_TGT            5       
/* Minimum difference allowed between ambient and target calibrations. */ 
#define    TARGET_DIFF                10 
 
/* BOOLEAN CONSTANTS */ 
#define    TRUE                        1       
#define    FALSE                       0 
 
/* BEHAVIOR COMMANDS */ 
/* Output commands behaviors request of the arbitrator. */ 
 
/* Behavior has no desired output.            */ 
#define    COMMAND_NONE               -1 
 
#define    COMMAND_STOP                0       
#define    COMMAND_FORWARD             1 
#define    COMMAND_REVERSE             2 
#define    COMMAND_LEFT                3 
#define    COMMAND_RIGHT               4 
#define    COMMAND_CAPTURE             5   
#define    COMMAND_RELEASE             6 
#define    COMMAND_RESET_DRIVE_ENCODER 7 
#define    COMMAND_RESET_TURN_ENCODER  8 
#define    COMMAND_RESET_MESSAGE       9 
 
/* IR MESSAGES */ 
#define    IR_MSG_MARCO                2 
#define    IR_MSG_POLO                 5 
#define    IR_MSG_ATHOME              10    /* Impacted Home      */ 
 
 
/* *** GLOBAL VARIABLES *** */ 
 
// Sensor variables. 
int gLightValue;              // Light value of light/touch sensor. 
int gAmbientLevel, gTargetThreshold;       // Threshold values. 
int gDriveEncoderTicks = 0;                // Drive encoder reading. 
int gTurnEncoderTicks = 0; 
int gIR_Message; 
int gAvoidCommand, gReleaseCommand, gReturnCommand, gAcquireCommand, 
gForageCommand; 
int gTargetTrapped = FALSE;           // Internal state of trap arm. 
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//////////////////////////////////////////////////////////////////// 
// File:   RForage.nqc 
// Version: 1.1.1 
// Author: Gary R. Mayer 
// Date: 24 August 2003 
// Project: SIUE CIS 595 - Master's Thesis Project 
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL 
//          ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM 
// 
// Description: This document provides a portion of code for a 
// reactive robot control architecture.  Specifically, it implements 
// a Forage behavior.  The details are explained below. 
// 
// Logic is based upon the basic Finite State Acceptor Diagram and 
// Suppression Arbitration Networks. 
// 
// The code is written in Not Quite C (NQC), a C-like programming 
// language that resides on top of the RCX brick's default firmware. 
// 
// RCX firmware version 2.0;  NQC version 2.5 R1 
//////////////////////////////////////////////////////////////////// 
 
 
task forage_task() 
{ 
 int direction; 
 int ticks; // Amount to turn; modified randomly. 
 
 gForageCommand = COMMAND_NONE; 
 SetRandomSeed(Timer(1)); 
 
 // Repeat indefinitely. 
 while (1) 
 { 
  // Randomly determine direction to turn. 
  direction = Random(3) + 1; // Random value of 1 - 4. 
 
  if ( (direction == 2) || (direction == 3) ) 
  { 
   // Prepare for turn. 
   gForageCommand = COMMAND_RESET_TURN_ENCODER; 
   ticks = Random(TURN_LENGTH_TICKS/4) + 5; 
   Wait(WAIT_TIME); 
 
   if ( direction == 2 ) 
   { 
    // Turn left. 
    gForageCommand = COMMAND_LEFT; 
    while ( gTurnEncoderTicks > -ticks ); 
   } 
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   else 
   { 
    // Turn right. 
    gForageCommand = COMMAND_RIGHT; 
    while ( gTurnEncoderTicks < ticks ); 
   } 
 
   gForageCommand = COMMAND_STOP; 
   Wait(WAIT_TIME); 
  } 
 
 
  // Move forward a random amount. 
  gForageCommand = COMMAND_RESET_DRIVE_ENCODER; 
  ticks = Random(GRID_LENGTH_TICKS/4) +  
                            (GRID_LENGTH_TICKS/ 4); 
  Wait(WAIT_TIME); 
  gForageCommand = COMMAND_FORWARD; 
  while ( gDriveEncoderTicks < ticks ); 
  gForageCommand = COMMAND_STOP; 
  Wait(WAIT_TIME); 
 } 
 
}  // end forage_task() 
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//////////////////////////////////////////////////////////////////// 
// File:   RAcquire.nqc 
// Version: 1.1.2 
// Author: Gary R. Mayer 
// Date: 26 August 2003 
// Project: SIUE CIS 595 - Master's Thesis Project 
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL 
//          ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM 
// 
// Description: This document provides a portion of code for a 
// reactive robot control architecture.  Specifically, it implements 
// an Acquire-Target behavior.  The details are explained below. 
// 
// Logic is based upon the basic Finite State Acceptor Diagram and 
// Suppression Arbitration Networks. 
// 
// The code is written in Not Quite C (NQC), a C-like programming 
// language that resides on top of the RCX brick's default firmware. 
// 
// RCX firmware version 2.0;  NQC version 2.5 R1 
//////////////////////////////////////////////////////////////////// 
 
 
task acquire_task() 
{ 
 int light_reading; 
 int ticks; 
 gAcquireCommand = COMMAND_NONE; 
 
 // Repeat indefinitely. 
 while (1) 
 { 
  // Get target. 
  if ( gTargetTrapped == FALSE ) 
  { 
   light_reading = gLightValue; 
 
   // Target in trap; capture it. 
   if ( (light_reading < OBSTACLE_THRESHOLD) && 
        (light_reading >= gTargetThreshold) ) 
   { 
    gAcquireCommand = COMMAND_CAPTURE; 
    Wait(WAIT_TIME); 
    Wait(TRAP_TIME); 
 
    gAcquireCommand = COMMAND_STOP; 
    Wait(WAIT_TIME); 
 
    gAcquireCommand = COMMAND_RESET_MESSAGE; 
    Wait(WAIT_TIME); 
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    gTargetTrapped = TRUE; 
    gAcquireCommand = COMMAND_NONE; 
    Wait(WAIT_TIME); 
   } 
 
   // Target seen; move toward it. 
   else if ( (light_reading > gAmbientLevel) && 
      (light_reading < gTargetThreshold) ) 
   { 
    gAcquireCommand = COMMAND_FORWARD; 
 
    while ( (light_reading > gAmbientLevel) && 
       (light_reading < gTargetThreshold) ) 
    { 
     light_reading = gLightValue; 
    } 
 
    gAcquireCommand = COMMAND_STOP; 
    Wait(WAIT_TIME); 
 
    // Check if target was bypassed. 
    if ( light_reading < gTargetThreshold ) 
    { 
     // Look left. 
     gAcquireCommand =  
                                 COMMAND_RESET_TURN_ENCODER; 
     Wait(WAIT_TIME); 
 
     ticks = -TURN_LENGTH_TICKS / 2; 
     gAcquireCommand = COMMAND_LEFT; 
     while ( (gTurnEncoderTicks > ticks) && 
      (gLightValue < gAmbientLevel) ); 
     gAcquireCommand = COMMAND_STOP; 
     Wait(WAIT_TIME); 
    } 
 
    if ( gLightValue <= gAmbientLevel ) 
    { 
     // Look right. 
     gAcquireCommand =  
                                COMMAND_RESET_TURN_ENCODER; 
     Wait(WAIT_TIME); 
 
     ticks = TURN_LENGTH_TICKS; 
     gAcquireCommand = COMMAND_RIGHT; 
     while ( (gTurnEncoderTicks < ticks) && 
      (gLightValue < gAmbientLevel) ); 
     gAcquireCommand = COMMAND_STOP; 
     Wait(WAIT_TIME); 
    } 
   } 
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   // Target not found. 
   else 
   { 
    gAcquireCommand = COMMAND_NONE; 
   } 
  } 
 
  // Target is already held. Take no action. 
  else 
  { 
   gAcquireCommand = COMMAND_NONE; 
  } 
 } 
 
}  // end acquire_task() 
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//////////////////////////////////////////////////////////////////// 
// File:   RReturn.nqc 
// Version: 1.1.2 
// Author: Gary R. Mayer 
// Date: 27 August 2003 
// Project: SIUE CIS 595 - Master's Project 
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL 
//          ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM 
// 
// Description: This document provides a portion of code for a 
// reactive robot control architecture.  Specifically, it implements 
// a Return-home behavior.  The details are explained below. 
// 
// Logic is based upon the basic Finite State Acceptor Diagram and 
// Suppression ArbitrationNetworks. 
// 
// The code is written in Not Quite C (NQC), a C-like programming 
// language that resides on top of the RCX brick's default firmware. 
// 
// RCX firmware version 2.0;  NQC version 2.5 R1 
//////////////////////////////////////////////////////////////////// 
 
 
task return_task() 
{ 
 int light_reading; 
 int count1, count2; 
 int direction; 
 int ticks; 
 
 gReturnCommand = COMMAND_NONE; 
 SetRandomSeed(Timer(1)); 
 
 // Repeat indefinitely. 
 while (1) 
 { 
  // Take no action unless target is trapped. 
  if ( gTargetTrapped == FALSE ) 
  { 
   gReturnCommand = COMMAND_NONE; 
   continue; 
  } 
 
  // Send message request to Home. 
  SendMessage(IR_MSG_MARCO); 
  Wait(RESPONSE_TIME); 
 
  if ( gIR_Message == IR_MSG_POLO ) 
  { 
   PlaySound(SOUND_CLICK); 
 
   gReturnCommand = COMMAND_RESET_DRIVE_ENCODER; 
   ticks = Random(GRID_LENGTH_TICKS/3) + 20; 
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   Wait(WAIT_TIME); 
 
   gReturnCommand = COMMAND_FORWARD; 
   while ( gDriveEncoderTicks < ticks ); 
  } 
 
  // No response received or response lost. 
  // Face a different direction or move. 
  else 
  { 
   // Random value of 1 - 10. 

            direction = Random(10) + 1;  
 
   if ( direction == 3 ) 
   { 
    // Turn right. 
    gReturnCommand =  
                          COMMAND_RESET_DRIVE_ENCODER; 
    ticks = Random(TURN_LENGTH_TICKS/4) + 5; 
    Wait(WAIT_TIME); 
 
    gReturnCommand = COMMAND_RIGHT; 
    while ( (gTurnEncoderTicks < ticks) && 
     (gIR_Message != IR_MSG_POLO) && 
     (gIR_Message != IR_MSG_ATHOME) ); 
   } 
 
   else if ( direction < 8 ) 
   { 
    // Turn left. 
    gReturnCommand = COMMAND_RESET_TURN_ENCODER; 
    ticks = Random(TURN_LENGTH_TICKS/5) + 5; 
    Wait(WAIT_TIME); 
 
    gReturnCommand = COMMAND_LEFT; 
    while ( (gTurnEncoderTicks > -ticks) && 
     (gIR_Message != IR_MSG_POLO) && 
     (gIR_Message != IR_MSG_ATHOME) ); 
   } 
 
   else 
   { 
    // Move forward until robot hits something 
    //   or sees a signal from Home. 
    gReturnCommand = COMMAND_RESET_MESSAGE; 
    Wait(WAIT_TIME); 
    gReturnCommand = COMMAND_FORWARD; 
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    while ((gLightValue < OBSTACLE_THRESHOLD) && 
     (gIR_Message != IR_MSG_POLO) && 
     (gIR_Message != IR_MSG_ATHOME) ) 
    { 
     SendMessage(IR_MSG_MARCO); 
     Wait(WAIT_TIME); 
    } 
   } 
  } 
 
  gReturnCommand = COMMAND_STOP; 
  Wait(WAIT_TIME); 
  gReturnCommand = COMMAND_RESET_MESSAGE; 
  Wait(WAIT_TIME); 
 } 
 
}  // end return_task() 
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//////////////////////////////////////////////////////////////////// 
// File:   RRelease.nqc 
// Version: 1.1.1 
// Author: Gary R. Mayer 
// Date: 26 August 2003 
// Project: SIUE CIS 595 - Master's Project 
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL 
//          ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM 
// 
// Description: This document provides a portion of code for a 
// reactive robot control architecture.  Specifically, it implements 
// a Home behavior that also releases targets.  The details are 
// explained below. 
// 
// Logic is based upon the basic Finite State Acceptor Diagram and 
// Suppression Arbitration Networks. 
// 
// The code is written in Not Quite C (NQC), a C-like programming 
// language that resides on top of the RCX brick's default firmware. 
// 
// RCX firmware version 2.0;  NQC version 2.2 R2 
//////////////////////////////////////////////////////////////////// 
 
 
task release_task() 
{ 
 gReleaseCommand = COMMAND_NONE; 
 
 // Repeat indefinitely. 
 while (1) 
 { 
  // Heard "At Home" message from RCX Home; drop target. 
  if ( (gTargetTrapped == TRUE) && 
       (gIR_Message == IR_MSG_ATHOME) ) 
  { 
 
   // Back away from Home a bit. 
   gReleaseCommand = COMMAND_STOP; 
   Wait(WAIT_TIME); 
   gReleaseCommand = COMMAND_RESET_DRIVE_ENCODER; 
   Wait(WAIT_TIME); 
   gReleaseCommand = COMMAND_REVERSE; 
   while ( gDriveEncoderTicks > 
                          -(GRID_LENGTH_TICKS / 6) ); 
   gReleaseCommand = COMMAND_FORWARD; 
   Wait(WAIT_TIME); 
   gReleaseCommand = COMMAND_STOP; 
   Wait(WAIT_TIME); 
 
   // Release target. 
   gReleaseCommand = COMMAND_RELEASE; 
   Wait(WAIT_TIME); 
   Wait(TRAP_TIME); 
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   gReleaseCommand = COMMAND_RESET_DRIVE_ENCODER; 
   Wait(WAIT_TIME); 
   gReleaseCommand = COMMAND_REVERSE; 
   while ( gDriveEncoderTicks > 
                          -(GRID_LENGTH_TICKS / 4) ); 
   gReleaseCommand = COMMAND_STOP; 
   Wait(WAIT_TIME); 
 
   // Turn robot and prepare to find next target. 
   gReleaseCommand = COMMAND_RESET_TURN_ENCODER; 
   Wait(WAIT_TIME); 
   gReleaseCommand = COMMAND_LEFT; 
   while ( gTurnEncoderTicks > 
                          -(TURN_LENGTH_TICKS * 2) ); 
   gReleaseCommand = COMMAND_STOP; 
   Wait(WAIT_TIME); 
 
   gTargetTrapped = FALSE; 
 
   gReleaseCommand = COMMAND_RESET_MESSAGE; 
   Wait(WAIT_TIME); 
 
   gReleaseCommand = COMMAND_NONE; 
  } 
 
  // Do nothing until target is trapped. 
  else 
  { 
   gReleaseCommand = COMMAND_NONE; 
   Wait(WAIT_TIME); 
  } 
 } 
 
}  // end release_task() 
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//////////////////////////////////////////////////////////////////// 
// File:   RAvoid.nqc 
// Version: 1.1.1 
// Author: Gary R. Mayer 
// Date: 24 August 2003 
// Project: SIUE CIS 595 - Master's Project 
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL 
//          ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM 
// 
// Description: This document provides a portion of code for a 
// reactive robot control architecture.  Specifically, it implements 
// an Avoid-obstacle behavior.  The details are explained below. 
// 
// Logic is based upon the basic Finite State Acceptor Diagram and 
// Suppression Arbitration Networks. 
// 
// The code is written in Not Quite C (NQC), a C-like programming 
// language that resides on top of the RCX brick's default firmware. 
// 
// RCX firmware version 2.0;  NQC version 2.4 R2 
//////////////////////////////////////////////////////////////////// 
 
 
task avoid_task() 
{ 
 int ticks; 
 int direction; 
 
 gAvoidCommand = COMMAND_NONE; 
 
 // Repeat indefinitely. 
 while (1) 
 { 
  // Back away and turn if an obstacle is impacted. 
  if ( gLightValue >= OBSTACLE_THRESHOLD ) 
  { 
        // Back away and turn around. 
   gAvoidCommand = COMMAND_STOP; 
   Wait(WAIT_TIME); 
   gAvoidCommand = COMMAND_RESET_DRIVE_ENCODER; 
   Wait(WAIT_TIME); 
   gAvoidCommand = COMMAND_REVERSE; 
   while ( gDriveEncoderTicks > 
                          -(GRID_LENGTH_TICKS / 4) ); 
   gAvoidCommand = COMMAND_STOP; 
   Wait(WAIT_TIME); 
 
   direction = Random(4) + 1; 
   gAvoidCommand = COMMAND_RESET_TURN_ENCODER; 
   Wait(WAIT_TIME); 
   ticks = Random(TURN_LENGTH_TICKS/2) + 
                            (TURN_LENGTH_TICKS / 4); 
 



133 

 

   if ( (direction == 1) || (direction == 3) ) 
   { 
    // Turn left. 
    gAvoidCommand = COMMAND_LEFT; 
    while ( (gTurnEncoderTicks > -ticks) && 
     (gLightValue < OBSTACLE_THRESHOLD) ); 
   } 
 
   else 
   { 
    // Turn right. 
    gAvoidCommand = COMMAND_RIGHT; 
    while ( (gTurnEncoderTicks < ticks) && 
     (gLightValue < OBSTACLE_THRESHOLD) ); 
   } 
 
   gAvoidCommand = COMMAND_STOP; 
   Wait(WAIT_TIME); 
 
   // End behavior if obstacles successfully avoided. 
   if ( gLightValue < OBSTACLE_THRESHOLD ) 
   { 
    gAvoidCommand = COMMAND_NONE; 
   } 
  } 
 
  else 
  { 
   gAvoidCommand = COMMAND_NONE; 
  } 
 } 
 
}  // end avoid_task() 
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//////////////////////////////////////////////////////////////////// 
// File:   RHOME.nqc 
// Version: 1.2.2 
// Author: Gary R. Mayer 
// Date: 26 August 2003 
// Project: SIUE CIS 595 - Master's Project 
// Title: IMPLEMENTATION OF A DELIBERATIVE ROBOT CONTROL 
//          ARCHITECTURE ON AN INEXPENSIVE ROBOT PLATFORM 
// 
// Description: This document provides the code for a reactive 
// robotic system.  Specifically, the robot is provided a return 
// home behavior that enables it to locate and maneuver towards a 
// fixed location in the arena called HOME.  This code resides on 
// the RCX unit that acts as HOME. It awaits an infrared (IR) signal 
// from the robot indicating that it is looking for HOME. This 
// signal is referred to as “Marco.” HOME then emits a response IR 
// signal, “Polo,” to guide the robot toward it. HOME will then emit 
// a different IR signal to inform the robot that it has reached 
// HOME when the robot hits its bumper, triggering its touch sensor. 
// 
// Logic is based upon the basic Finite State Acceptor Diagram. 
// 
// The code is written in Not Quite C (NQC),a C-like programming 
// language that resides on top of the RCX brick's default firmware. 
// 
// RCX firmware version 2.0;  NQC version 2.5 R1 
//////////////////////////////////////////////////////////////////// 
 
 
#define    BUMPER              SENSOR_1 
 
#define    IR_MSG_MARCO               2 
#define    IR_MSG_POLO                5 
#define    IR_MSG_ATHOME             10 
 
#define    PAUSE_TIME                30 
 
task main() 
{ 
 int response = 0; 
 int echos = 3; 
 
 //Set IR transmission power. 
 SetTxPower(TX_POWER_HI); 
 
 // Set bumper sensor. 
 SetSensor(BUMPER, SENSOR_TOUCH); 
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 // Repeat indefinitely. 
 while (1) 
 { 
  if ( Message() == IR_MSG_MARCO ) 
  { 
   PlaySound(SOUND_DOUBLE_BEEP); 
 
   while ( response < echos ) 
   { 
    SendMessage(IR_MSG_POLO); 
    Wait(PAUSE_TIME); 
    response++; 
   } 
 
   response = 0; 
   ClearMessage(); 
  } 
 
  while ( BUMPER == true ) 
  { 
   SendMessage(IR_MSG_ATHOME); 
   PlaySound(SOUND_UP); 
   Wait(PAUSE_TIME/2); 
  } 
 } 
 
}  // end main() 
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CODE FOR THE DELIBERATIVE ROBOTIC ARCHITECTURE 

The code for the deliberative robotic architecture is written in IC4, version 4.21, and 

contained in a single file. 

////////////////////////////////////////////////////////////////////////// 
//     File:  Deliberative.ic 
//   Author:  Gary R. Mayer 
//     Date:  21 August 2003 
//  Version:  1.0.0 
//  Project:  SIUE CIS 595 - Master's Thesis Project 
// Language:  Interactive C v4.2 
// 
// Description:  This program provides a deliberate robotic architecture 
// for a LEGO Mindstorms RCX controller. The program maintains the 
// robot's current position in an arena. The arena map is maintained as 
// a grid and the program uses a wavefront algorithm to plan movement 
// from the robot's current position to a desired goal position. 
// 
// Obstacles are initially hand designated, as are the goal position(s), 
// starting location, and starting heading. At least one goal and the 
// starting location must be specified.  When entering data, if a 0 is 
// entered for the row number, it assumed that data entry for that object 
// type is complete.  If the robot's sensors detect an inconsistency in 
// the world map, then it will stop its current progress, update the map, 
// and replan. 
// 
//  Note that it is not intended for the robot to travel diagonally. 
////////////////////////////////////////////////////////////////////////// 
 
/* PREPROCESSOR CONSTANT DEFINITIONS */ 
#define    DEBUG                             /* LCD debug output. */ 
//#define    TRACE 
 
#define    ROWS                        6     /* 4 working rows. */ 
#define    COLS                        8     /* 6 working columns. */ 
#define    STEPS                      19     /* Max anticipated steps. */ 
#define    MAX_GOALS                   5     /* Max number of goals */ 
#define    MAX_OBSTACLES              10 
 
#define    ROW                         0     /* Row element ref. */ 
#define    COL                         1     /* Column element ref. */ 
 
#define    TRUE                        1 
#define    FALSE                       0 
 
#define    NORTH                       0 
#define    EAST                        1 
#define    SOUTH                       2 
#define    WEST                        3 
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#define    TRAP_MOTOR                  1 
#define    DRIVE_MOTOR                 2 
#define    TURN_MOTOR                  3 
 
#define    TURN_ENCODER                1 
#define    LIGHT_SENSOR                2     /* Touch sensor ganged. */ 
#define    DRIVE_ENCODER               3 
 
#define    TRAP_SPEED                 70 
#define    DRIVE_SPEED               100 
#define    TURN_SPEED                100 
 
#define    GRID_LENGTH_TICKS         252 
#define    TURN_LENGTH_TICKS          70 
#define    DRIVE_TICKS_CORRECTION      8     /* Gear slop correction for 

Fwd->Rev and Rev->Fwd.  */ 
#define    TURN_TICKS_CORRECTION       3     /* Gear slop correction for 

changing turn direction.*/ 
#define    TRAP_TIME                 1.0 
 
#define    START                       0 
#define    OBSTACLE                    1 
#define    GOAL                        2 
 
/* Drive and turn motors’ direction last traveled. Used to */ 
/*   modify ticks traveled and compensate for gear slop.   */ 
#define    FORWARD                     0 
#define    REVERSE                     1      
#define    LEFT                        2 
#define    RIGHT                       3 
 
#define    OBSTACLE_THRESHOLD         70 
#define    LIGHT_BUFFER_AMB           40 
#define    LIGHT_BUFFER_TGT           50 
#define    TARGET_DIFF                25 
 
/* Path creation flags to determine if wavefront algorithm   */ 
/* should consider known goals as obstacles or consider them */ 
/* as empty space.                                           */ 
#define    SHORTEST_PATH               0      
#define    AVOID_KNOWN_GOALS           1      
 
/* Error codes. */ 
#define    ERROR_NO_PATH            -100     /* No path to goal       */ 
#define    ERROR_NO_GOALS           -110     /* No known goals remain */   
 
/* GLOBAL VARIABLES */ 
int gGrid[ROWS][COLS];             // Arena (with boundary edges). 
int gStartPosition[2];             // Start position robot returns to. 
int gCurrentPosition[2];           // Robot's current position in arena. 
int gHeading;                      // Robot's internal facing reference. 
int gGoals[MAX_GOALS][2];          // Known goal locations in arena. 
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int gNumGoals = 0;                 // Number of goals in arena. 
int gCurrentGoal = 0;              // Current goal being sought. 
int gObstacles[MAX_OBSTACLES][2];  // Obstacle locations in arena. 
int gNumObstacles = 0;             // Number of obstacles in arena. 
 
int gPath[STEPS][2];               // Path to nearest goal. 
int gHaveTarget = FALSE;           // Target is currently being held. 
 
int gAmbient;                      // Arena ambient light value. 
int gTargetThreshold;              // Target ambient light value. 
 
int gMovingForward = FALSE; 
 
int gLastDrive = FORWARD; 
int gLastTurn = LEFT; 
 
// Process identification numbers. 
int gRetrieve_PID, gLook_PID; 
 
/* Function: main() - primary program flow of control */ 
void main() 
{ 
    // Clear display. 
    printf(""); 
     
    // Calbrate light sensor to arena ambient average. 
    while ( !prgm_button() ); 
    while ( prgm_button() ); 
    printf("CAML"); 
    beep();     
     
    gAmbient = CalibrateLight() - LIGHT_BUFFER_AMB; 
     
    #ifdef DEBUG 
      printf("A%d", gAmbient); 
    beep(); 
    #endif 
     
    while ( !prgm_button() ); 
    while ( prgm_button() ); 
     
    // Calibrate target threshold to target light average. 
    printf("CTGL"); 
    beep(); 
     
    gTargetThreshold = CalibrateLight() + LIGHT_BUFFER_TGT; 
     
    #ifdef DEBUG 
      printf("T%d", gTargetThreshold); 
    beep(); 
    #endif 
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    while ( !prgm_button() ); 
    while ( prgm_button() ); 
     
    // Ensure enough disparity exists between light readings. 
    if ( gTargetThreshold >= gAmbient - TARGET_DIFF ) 
      { 
        printf("ERR"); 
        beep(); 
        beep(); 
        beep(); 
        beep(); 
         
        return; 
    } 
     
    // Enable encoders. 
    enable_bidir_encoder(DRIVE_ENCODER); 
    enable_bidir_encoder(TURN_ENCODER); 
    reset_encoder(DRIVE_ENCODER); 
    reset_encoder(TURN_ENCODER); 
     
    // Get obstacle positions from user. 
    GetPosition(OBSTACLE); 
     
    // Get goal positions from user. 
    GetPosition(GOAL); 
     
    // Get robot starting position and heading from user. 
    GetPosition(START); 
    GetStartHeading(); 
     
    // Clear display. 
    printf(""); 
     
    // Start the processes that monitor the sensors and 
    // path planning to the known targets. 
    gLook_PID = start_process(LookAhead()); 
    gRetrieve_PID = start_process(RetrieveGoals()); 
     
    // Wait until all known goals are found. 
    while ( (gNumGoals != 0) || 
           (gCurrentPosition[ROW] != gStartPosition[ROW]) || 
           (gCurrentPosition[COL] != gStartPosition[COL]) ) 
      sleep(0.25); 
     
    sleep (1.0); 
     
    // Kill all processes and signal completion. 
    kill_process(gLook_PID); 
    kill_process(gRetrieve_PID); 
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    if ( gHaveTarget == TRUE ) 
      { 
        motor(TRAP_MOTOR, -TRAP_SPEED); 
        sleep(TRAP_TIME); 
        off(TRAP_MOTOR); 
         
        gHaveTarget = FALSE; 
    } 
     
    beep(); 
    beep(); 
     
    return; 
     
}  // end main() 
 
 
/*********************************/ 
/**   MAJOR PROCESS FUNCTIONS   **/ 
/*********************************/ 
// Process: MonitorTouchSensor 
// Monitor touch sensor(s) for possible failed plan 
// caused by impact with unknown obstacles. 
void LookAhead(void) 
{ 
    int light_reading; 
     
    while (1) 
      { 
        // Only seek new obstacles / goals while moving forward. 
        // Input from turning will yield unexpected results. 
        if ( (gNumGoals != 0) && 
            (gMovingForward == TRUE) ) 
          { 
            light_reading = light(LIGHT_SENSOR); 
             
            // Take another reading to allow sensor to settle. 
            if ( light_reading < gTargetThreshold ) 
              //            if ( light_reading < gAmbient ) 
              { 
                sleep(0.25); 
                light_reading = light(LIGHT_SENSOR); 
            } 
             
            // Check if new obstacle was found. 
            if ( light_reading < OBSTACLE_THRESHOLD ) 
              { 
                // Stop current path following, update map, and 
                // back robot up to last safe position. 
                kill_process(gRetrieve_PID); 
                brake(DRIVE_MOTOR); 
                gMovingForward = FALSE; 
                AddObstacle(gCurrentPosition[ROW], gCurrentPosition[COL]); 
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                BackUp(); 
                 
                // Restart path following process (will force replan). 
                gRetrieve_PID = start_process(RetrieveGoals()); 
            } 
             
            // Check if light sensor found new goal. 
            else if ( (gHaveTarget == FALSE) && 
                 ((gCurrentPosition[ROW] != gGoals[gCurrentGoal][ROW]) || 
                  (gCurrentPosition[COL] != gGoals[gCurrentGoal][COL])) && 
                 (light_reading <= gTargetThreshold) ) 
                { 
                  // Stop current path following, update map, and 
                  // back robot up to last safe position. 
                  kill_process(gRetrieve_PID); 
                  brake(DRIVE_MOTOR); 
                  gMovingForward = FALSE; 
                  AddGoal(gCurrentPosition[ROW], gCurrentPosition[COL]); 
                  BackUp(); 
                   
                  // Restart path following process (will force replan). 
                  gRetrieve_PID = start_process(RetrieveGoals()); 
              } 
        } 
    } 
     
    return; 
     
}  // end LookAhead() 
 
 
// Process: RetrieveGoals 
// Retrieve known goals and return them to start location. 
void RetrieveGoals(void) 
{ 
    int num_steps; 
    int light_reading; 
     
    // Repeat indefinitely. 
    while (1) 
      { 
        #ifdef TRACE 
          printf("InRG"); 
        beep(); 
        sleep(1.5); 
        #endif 
         
        num_steps = ERROR_NO_PATH; 
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        // Ensure path exists between current location and goal.      
        while ( num_steps == ERROR_NO_PATH ) 
          { 
            // Find nearest goal. 
            // If a target is held, the start position is the goal. 
            if ( gHaveTarget == TRUE ) 
              { 
                AddGoal(gStartPosition[ROW], gStartPosition[COL]); 
                gCurrentGoal = gNumGoals - 1; 
            } 
             
            else 
              gCurrentGoal = FindClosestGoal(); 
             
            #ifdef TRACE 
              printf("CG%d", gCurrentGoal); 
            tone(250.5, 0.5); 
            sleep(3.0); 
            #endif 
             
            // Quit if no goals remain. 
            if ( gCurrentGoal == ERROR_NO_GOALS ) 
              return; 
             
            // Create a travel path. 
            num_steps = CreatePath(gCurrentGoal, AVOID_KNOWN_GOALS); 
             
            if ( num_steps == ERROR_NO_PATH ) 
              { 
                // Attempt to create path Home failed. 
                if ( gHaveTarget == TRUE ) 
                  { 
                    // Try to create a path through known goals. 
                    num_steps = CreatePath(gCurrentGoal, SHORTEST_PATH); 
                     
                    // If the second attempt at returning Home is invalid, 
                    //   robot is seperated from Home by obstacles. 
                    if ( num_steps == ERROR_NO_PATH ) 
                      { 
                        // Signal error and set the number of remaining 
                        //   goals to 0 to cause main() to exit. 
                        printf("ERR"); 
                        beep(); 
                        beep(); 
                        beep(); 
                        sleep(2.0); 
                        gNumGoals = 0; 
                         
                        return; 
                    } 
                } 
                 
 



144 

 

                // Attempt to create path to a goal failed. 
                else 
                  RemoveGoal(gCurrentGoal);        // Delete goal. 
            } 
        } 
         
        // Follow travel path to goal. 
        FollowPath(num_steps); 
         
        // Deal with target at destination. 
        if ( gHaveTarget == FALSE ) 
          { 
            light_reading = light(LIGHT_SENSOR); 
             
            // Capture target goal if it is there. 
            if ( (light_reading < gTargetThreshold) && 
                //            if ( (light_reading < gAmbient) && 
                (light_reading > OBSTACLE_THRESHOLD) ) 
              CaptureTarget(); 
             
            else 
              { 
                // No target; signal plan failure. 
                tone(90.0, 0.5); 
                tone(10.0, 0.5); 
            } 
        } 
         
        else 
          { 
            ReleaseTarget(); 
             
            // Announce target dropped and await signal to continue. 
            // Note: Human can reposition robot to maintain localization. 
            tone(5000.0, 0.5); 
            tone(4000.0, 0.5); 
            tone(3000.0, 0.35); 
            tone(1500.0, 0.25); 
             
            while ( !prgm_button() ); 
            while ( prgm_button() ); 
             
            sleep(1.0); 
            gHaveTarget = FALSE; 
        } 
         
        // Remove goal from goal list. 
        RemoveGoal(gCurrentGoal); 
    } 
     
    return; 
     
}  // end RetrieveTargets() 
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/**************************************************/ 
/****         INITIALIZATION FUNCTIONS         ****/ 
/**************************************************/ 
// Provide an average of readings for the light sensor over time. 
int CalibrateLight(void) 
{ 
    int i; 
    int num_samples = 15; 
    float wait_time = 0.35; 
    int amb = 0; 
     
    for ( i = 0; i < num_samples; i++ ) 
      { 
        amb = amb + light(LIGHT_SENSOR); 
        sleep(wait_time); 
    } 
     
    amb = amb / num_samples; 
     
    return amb; 
     
}  // end CalibrateLight() 
 
 
// Get position(s) of obstacle(s), goal(s) and start location. A selection 
// of 0 for the row indicates data entry is complete for that data type. 
void GetPosition(int type) 
{ 
    int row = 999;            // row number 
    int col = 999;            // column number 
    int change = FALSE;       // The number should change. 
    int select = FALSE;       // The number has been selected. 
    int reset_zero;           // Force numbers to cycle between 0 and max 

//   or 1 and max. 
     
    if ( type == OBSTACLE ) 
      { 
        reset_zero = TRUE;    // Obstacles are optional. 
    } 
     
    else 
      { 
        reset_zero = FALSE;   // A goal and start location must be input. 
    } 
     
    while ( row != 0 ) 
      { 
        if ( reset_zero == TRUE ) 
          { 
            row = 0; 
        } 
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        else 
          { 
            row = 1; 
        } 
         
        select = FALSE; 
        change = FALSE; 
         
        while ( select == FALSE ) 
          { 
            if ( type == OBSTACLE ) 
              { 
                printf("or%d", row); 
            } 
             
            else if ( type == GOAL ) 
                { 
                  printf("gr%d", row); 
              } 
               
              else 
                { 
                  printf("Sr%d", row); 
              } 
             
            if ( view_button() ) 
              { 
                change = TRUE; 
            } 
             
            if ( change == TRUE ) 
              { 
                row++; 
                 
                if ( row > ROWS - 2 ) 
                  { 
                    if ( reset_zero = TRUE ) 
                      { 
                        row = 0; 
                    } 
                     
                    else 
                      { 
                        row = 1; 
                    } 
                } 
                 
                change = FALSE; 
            } 
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            if ( prgm_button() ) 
              { 
                select = TRUE; 
            } 
             
            sleep(0.5); 
        } 
         
        select = FALSE; 
        change = FALSE; 
        col = 1; 
         
        if ( row != 0 ) 
          { 
            while ( select == FALSE ) 
              { 
                if ( type == OBSTACLE ) 
                  { 
                    printf("oc%d", col); 
                } 
                 
                else if ( type == GOAL ) 
                    { 
                      printf("gc%d", col); 
                  } 
                   
                  else 
                    { 
                      printf("Sc%d", col); 
                  } 
                 
                if ( view_button() ) 
                  { 
                    change = TRUE; 
                } 
                 
                if ( change == TRUE ) 
                  { 
                    col++; 
                     
                    if ( col > COLS - 2) 
                      { 
                        col = 1; 
                    } 
                     
                    change = FALSE; 
                } 
                 
                if ( prgm_button() ) 
                  { 
                    select = TRUE; 
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                    if ( type == GOAL ) 
                      { 
                        reset_zero = TRUE; 
                    }  
                } 
                 
                sleep(0.5); 
            } 
        } 
         
        if ( row != 0 ) 
          { 
            if ( type == OBSTACLE ) 
              { 
                AddObstacle(row, col); 
            } 
             
            else if ( type == GOAL ) 
                { 
                  AddGoal(row, col); 
              } 
               
              else 
                { 
                  gStartPosition[ROW] = row; 
                  gStartPosition[COL] = col; 
                  gCurrentPosition[ROW] = row; 
                  gCurrentPosition[COL] = col; 
                  row = 0; 
              } 
        } 
    } 
     
    return; 
     
}  // end GetPosition() 
 
 
// Get starting heading. 
void GetStartHeading(void) 
{ 
    int select = FALSE; 
    int change = FALSE; 
    gHeading = NORTH; 
     
    while ( select == FALSE ) 
      { 
        if ( gHeading == NORTH ) 
          { 
            printf("Hd N"); 
        } 
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        else if ( gHeading == SOUTH ) 
            { 
              printf("Hd S"); 
          } 
           
          else if ( gHeading == EAST ) 
              { 
                printf("Hd E"); 
            } 
             
            else 
              { 
                printf("Hd W"); 
            } 
         
        if ( view_button() ) 
          { 
            change = TRUE; 
        } 
         
        if ( change == TRUE ) 
          { 
            gHeading = (gHeading + 1) % 4; 
            change = FALSE; 
        } 
         
        if ( prgm_button() ) 
          { 
            select = TRUE; 
        } 
         
        sleep(0.25); 
    } 
     
    return; 
     
}  // end GetStartHeading() 
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/**************************************************/ 
/****          CARTOGRAPHER FUNCTIONS          ****/ 
/**************************************************/ 
// Generate map with current data. 
void GenerateMap(void) 
{ 
    // Loop variables. 
    int row, col, ob; 
     
    // Clear map of prior data. 
    for ( row = 0; row < ROWS; row++ ) 
      { 
        for ( col = 0; col < COLS; col++ ) 
          { 
            if ( (row == 0) || (row == ROWS-1) || 
                (col == 0) || (col == COLS-1) ) 
              { 
                gGrid[row][col] = 1; 
            } 
             
            else 
              { 
                gGrid[row][col] = 0; 
            } 
        } 
    } 
     
    // Add obstacles to map. 
    for ( ob = 0; ob < gNumObstacles; ob++ ) 
      UpdateMap(gObstacles[ob][ROW], gObstacles[ob][COL], OBSTACLE); 
     
    // Add current robot location to map. 
    UpdateMap(gCurrentPosition[ROW], gCurrentPosition[COL], START); 
     
    return; 
     
}  // end GenerateMap() 
 
 
// Update map with new information. 
void UpdateMap(int row, int col, int identifier) 
{ 
    if ( (row > 0) && (row < ROWS - 1) && 
        (col > 0 ) && (col < COLS - 1) && 
        ((identifier >= 0) && (identifier <= 2)) ) 
      { 
        gGrid[row][col] = identifier; 
    } 
     
    return; 
     
}  // end UpdateMap() 
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/**************************************************/ 
/****           NAVIGATOR FUNCTIONS            ****/ 
/**************************************************/ 
// Path planning using the wavefront algorithm. 
// Returns number of steps to goal. 
int CreatePath(int goal_num, int creation_flag) 
{ 
    // Loop variables. 
    int goal, row, col, facing; 
    int step_position[2]; 
     
    // Monitor if a grid has been updated. 
    int updates = TRUE; 
     
    // Wavefront algorithm results. 
    int num_steps = 0; 
     
    #ifdef TRACE 
      printf("InCP"); 
    beep(); 
    sleep(1.5); 
    #endif 
     
    // Generate clean map. 
    GenerateMap(); 
     
    // Set grid for desired goal. 
    SetGoal(goal_num, creation_flag); 
     
    // Perform wavefront until no grid spaces are updated. 
    updates = TRUE; 
     
    while ( updates == TRUE ) 
      { 
        updates = FALSE; 
         
        for ( row = 1; row < ROWS-1; row++ ) 
          { 
            for ( col = 1; col < COLS-1; col++ ) 
              { 
                if ( gGrid[row][col] > 1 ) 
                  { 
                    if ( gGrid[row-1][col] == 0 ) 
                      { 
                        gGrid[row-1][col] = gGrid[row][col] + 1; 
                        updates = TRUE; 
                    } 
                     
                    if ( gGrid[row][col+1] == 0 ) 
                      { 
                        gGrid[row][col+1] = gGrid[row][col] + 1; 
                        updates = TRUE; 
                    } 
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                    if ( gGrid[row+1][col] == 0 ) 
                      { 
                        gGrid[row+1][col] = gGrid[row][col] + 1; 
                        updates = TRUE; 
                    } 
                     
                    if ( gGrid[row][col-1] == 0 ) 
                      { 
                        gGrid[row][col-1] = gGrid[row][col] + 1; 
                        updates = TRUE; 
                    } 
                } 
            } 
        } 
    } 
     
    gPath[0][ROW] = gCurrentPosition[ROW]; 
    gPath[0][COL] = gCurrentPosition[COL]; 
    num_steps = 0; 
     
    // Ensure goal is reachable from current position. 
    if ( gGrid[gCurrentPosition[ROW]][gCurrentPosition[COL]] == 0 ) 
      { 
        printf("PERR"); 
        beep(); 
        beep(); 
        beep(); 
        sleep(2.0); 
         
        return ERROR_NO_PATH; 
    } 
     
    step_position[ROW] = gCurrentPosition[ROW]; 
    step_position[COL] = gCurrentPosition[COL]; 
     
    while ( gGrid[step_position[ROW]][step_position[COL]] != 
gGrid[gGoals[gCurrentGoal][ROW]][gGoals[gCurrentGoal][COL]] ) 
      { 
        num_steps++; 
        facing = gHeading;   // Start search in direction robot is facing 
                             //   to reduce turns. 
         
        while (1)   // Loop exits when lower cost grid space is found. 
          { 
            if ( (facing == SOUTH) && 
                (gGrid[step_position[ROW]-1][step_position[COL]] < 
                   gGrid[step_position[ROW]][step_position[COL]]) && 
                (gGrid[step_position[ROW]-1][step_position[COL]] > 1) ) 
              { 
                step_position[ROW] = step_position[ROW] - 1; 
                break; 
            } 
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            else if ( (facing == EAST) && 
                   (gGrid[step_position[ROW]][step_position[COL]+1] < 
                       gGrid[step_position[ROW]][step_position[COL]]) && 
                   (gGrid[step_position[ROW]][step_position[COL]+1] > 1) ) 
                { 
                  step_position[COL] = step_position[COL] + 1; 
                  break; 
              } 
               
              else if ( (facing == NORTH) && 
                   (gGrid[step_position[ROW]+1][step_position[COL]] < 
                      gGrid[step_position[ROW]][step_position[COL]]) && 
                   (gGrid[step_position[ROW]+1][step_position[COL]] > 1) ) 
                  { 
                    step_position[ROW] = step_position[ROW] + 1; 
                    break; 
                } 
                 
                else if ( (facing == WEST) && 
                   (gGrid[step_position[ROW]][step_position[COL]-1] <  
                      gGrid[step_position[ROW]][step_position[COL]]) && 
                   (gGrid[step_position[ROW]][step_position[COL]-1] > 1) ) 
                    { 
                      step_position[COL] = step_position[COL] - 1; 
                      break; 
                  } 
                   
                  // Check next direction. 
                  facing = (facing + 1) % 4; 
        } 
         
        gPath[num_steps][ROW] = step_position[ROW]; 
        gPath[num_steps][COL] = step_position[COL]; 
    } 
     
    #ifdef TRACE 
      printf("EcCP"); 
    beep(); 
    sleep(1.5); 
    #endif 
     
    return num_steps; 
     
}  // end CreatePath() 
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// Follow path to desired goal. 
void FollowPath(int num_steps) 
{ 
    int step, desired_facing; 
     
    #ifdef DEBUG 
      printf("Path"); 
    sleep(1.0); 
    #endif 
     
    for ( step = 1; step <= num_steps; step++ ) 
      { 
        if ( gPath[step][ROW] == gCurrentPosition[ROW] - 1 ) 
          { 
            desired_facing = NORTH; 
        } 
         
        else if ( gPath[step][ROW] == gCurrentPosition[ROW] + 1 ) 
            { 
              desired_facing = SOUTH; 
          } 
           
          else if ( gPath[step][COL] == gCurrentPosition[COL] + 1 ) 
              { 
                desired_facing = EAST; 
            } 
             
            else 
              { 
                desired_facing = WEST; 
            } 
         
        if ( desired_facing == ((gHeading + 3) % 4) ) 
          { 
            TurnLeft(); 
        } 
         
        else 
          { 
            while ( gHeading != desired_facing ) 
              { 
                TurnRight(); 
            } 
        } 
         
        MoveForward(); 
         
        #ifdef DEBUG 
          // Display [Row, Column, Step] 
          // Note: Step counts down when moving toward a goal; 

    //       up when moving toward Start. 
          printf("%d%d%d", gCurrentPosition[ROW], gCurrentPosition[COL], 
                 gGrid[gPath[step][ROW]][gPath[step][COL]]);      
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        beep(); 
        sleep(0.5); 
        #endif 
    } 
     
    return; 
     
}  // end FollowPath() 
 
 
// Sets map to allow wavefront pathing to a single, desired goal. 
// The flag variable determines if known goal positions are 
//   considered obstacles or passable. Default is as obstacle. 
void SetGoal(int goal_num, int flag) 
{ 
    int g; 
    int marker = OBSTACLE; 
     
    if ( flag == SHORTEST_PATH ) 
      marker = 0; 
     
    // All goals beside the one being sought are set per the flag. 
    for ( g = 0; g < gNumGoals; g++ ) 
      { 
        if ( g == goal_num ) 
          UpdateMap(gGoals[g][ROW], gGoals[g][COL], GOAL); 
         
        else 
          UpdateMap(gGoals[g][ROW], gGoals[g][COL], marker); 
    } 
     
    gCurrentGoal = goal_num; 
     
    #ifdef DEBUG 
      printf("g%d", goal_num); 
    sleep(1.0); 
    #endif 
     
    return; 
     
}  // end SetGoal() 
 
 
// Find the goal closest to current location. 
// Returns goal number of the closest goal. 
int FindClosestGoal(void) 
{ 
    int goal_num, g, steps; 
    int min_steps = 999; 
     
    #ifdef TRACE 
      printf("InFG"); 
    beep(); 
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    sleep(1.5); 
     
    printf("nG %d", gNumGoals); 
    beep(); 
    sleep(1.5); 
    #endif 
     
    if ( gNumGoals == 0 ) 
      { 
        #ifdef TRACE 
          printf("EcFG"); 
        beep(); 
        sleep(1.5); 
        #endif 
         
        return ERROR_NO_GOALS; 
    } 
     
    if ( gNumGoals == 1 ) 
      return 0; 
     
    // Default; should no goals be reachable. 
    goal_num = ERROR_NO_GOALS; 
     
    for ( g = 0; g < gNumGoals; g++ ) 
      { 
        steps = CreatePath(g, SHORTEST_PATH); 
         
        if ( (steps != ERROR_NO_PATH) && 
            (steps < min_steps) ) 
          { 
            min_steps = steps; 
            goal_num = g; 
        } 
    } 
     
    #ifdef TRACE 
      printf("EcFG"); 
    beep(); 
    sleep(1.5); 
    #endif 
     
    return goal_num; 
     
}  // end FindClosestGoal() 
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// Add a goal to the goal list. 
void AddGoal(int goal_row, int goal_col) 
{ 
    int g; 
     
    // Ensure maximum number of goals isn't exceeded. 
    if ( gNumGoals == MAX_GOALS ) 
      { 
        printf("maxg"); 
        beep(); 
        beep(); 
        beep(); 
        sleep(2.0); 
         
        return; 
    } 
     
    // Ensure goal coordinates are valid. 
    if ( (goal_row <= 0) || (goal_row > ROWS - 2) || 
        (goal_col <= 0) || (goal_col > COLS - 2) ) 
      { 
        return; 
    } 
     
    // Ensure goal doesn't already exist. 
    for ( g = 0; g < gNumGoals; g++ ) 
      { 
        if ( (gGoals[g][ROW] == goal_row) && 
            (gGoals[g][COL] == goal_col) ) 
          { 
            return; 
        } 
    } 
     
    // Enter new goal into goal list. 
    gNumGoals++; 
     
    gGoals[gNumGoals - 1][ROW] = goal_row; 
    gGoals[gNumGoals - 1][COL] = goal_col; 
     
    #ifdef DEBUG 
      printf("g%d%d%d", gNumGoals - 1, goal_row, goal_col); 
    tone(3500.0, 0.25); 
    tone(5050.5, 0.25); 
    sleep(2.0); 
    #endif 
     
    return; 
     
}  // end AddGoal() 
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// Remove goal from goal list. 
void RemoveGoal(int goal_num) 
{ 
    if ( goal_num != gNumGoals - 1 ) 
      { 
        gGoals[goal_num][ROW] = gGoals[gNumGoals - 1][ROW]; 
        gGoals[goal_num][COL] = gGoals[gNumGoals - 1][COL]; 
    } 
     
    gGoals[gNumGoals - 1][ROW] = 0; 
    gGoals[gNumGoals - 1][COL] = 0;         
     
    gNumGoals = gNumGoals - 1; 
     
    return; 
     
}  // end RemoveGoal() 
 
 
// Add obstacle to obstacle list. 
void AddObstacle(int obstacle_row, int obstacle_col) 
{ 
    int ob; 
     
    // Ensure maximum number of obstacles isn't exceeded. 
    if ( gNumObstacles == MAX_OBSTACLES ) 
      { 
        printf("maxo"); 
        beep(); 
        beep(); 
        beep(); 
        sleep(2.0); 
         
        return; 
    } 
     
    // Ensure obstacle coordinates are valid. 
    if ( (obstacle_row <= 0) || (obstacle_row > ROWS - 2) || 
        (obstacle_col <= 0) || (obstacle_col > COLS - 2) ) 
      { 
        return; 
    } 
     
    // Ensure obstacle doesn't already exist. 
    for ( ob = 0; ob < gNumObstacles; ob++ ) 
      { 
        if ( (gObstacles[ob][ROW] == obstacle_row) && 
            (gObstacles[ob][COL] == obstacle_col) ) 
          { 
            return; 
        } 
    } 
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    // Enter new obstacle into obstacle list. 
    gNumObstacles++; 
     
    gObstacles[gNumObstacles - 1][ROW] = obstacle_row; 
    gObstacles[gNumObstacles - 1][COL] = obstacle_col; 
     
    #ifdef DEBUG 
      printf("o%d%d%d", gNumObstacles, obstacle_row, obstacle_col); 
    sleep(2.0); 
    #endif 
     
    return; 
     
}  // end AddObstacle() 
 
 
/**************************************************/ 
/****             PILOT FUNCTIONS              ****/ 
/**************************************************/ 
// Move the robot forward. 
void MoveForward(void) 
{ 
    int ticks = GRID_LENGTH_TICKS; 
     
    if ( gHeading == NORTH ) 
      { 
        if ( gCurrentPosition[ROW] == 1 ) 
          { 
            return; 
        } 
         
        gCurrentPosition[ROW] = gCurrentPosition[ROW] - 1; 
    } 
     
    else if ( gHeading == EAST ) 
        { 
          if ( gCurrentPosition[COL] == COLS - 2 ) 
            { 
              return; 
          } 
           
          gCurrentPosition[COL] = gCurrentPosition[COL] + 1; 
      } 
       
      else if ( gHeading == SOUTH ) 
          { 
            if ( gCurrentPosition[ROW] == ROWS - 2 ) 
              {    
                return; 
            } 
             
            gCurrentPosition[ROW] = gCurrentPosition[ROW] + 1; 
        } 
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        else 
          { 
            if ( gCurrentPosition[COL] == 1 ) 
              { 
                return; 
            } 
             
            gCurrentPosition[COL] = gCurrentPosition[COL] - 1; 
        } 
     
    printf("fd"); 
    sleep(0.5); 
     
    if ( gLastDrive == REVERSE ) 
      ticks -= DRIVE_TICKS_CORRECTION; 
     
    reset_encoder(DRIVE_ENCODER); 
    gMovingForward = TRUE; 
    motor(DRIVE_MOTOR, DRIVE_SPEED); 
    while ( read_encoder(DRIVE_ENCODER) < ticks ); 
    brake(DRIVE_MOTOR); 
     
    gMovingForward = FALSE; 
    gLastDrive = FORWARD; 
     
    return; 
     
}  // end MoveForward() 
 
 
// Back robot up to last position. 
void BackUp(void) 
{ 
    int ticks = 0; 
     
    if ( gHeading == NORTH ) 
      { 
        gCurrentPosition[ROW] = gCurrentPosition[ROW] + 1; 
    } 
     
    else if ( gHeading == EAST ) 
        { 
          gCurrentPosition[COL] = gCurrentPosition[COL] - 1; 
      } 
       
      else if ( gHeading == SOUTH ) 
          { 
            gCurrentPosition[ROW] = gCurrentPosition[ROW] - 1; 
        } 
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        else 
          { 
            gCurrentPosition[COL] = gCurrentPosition[COL] + 1; 
        } 
     
    #ifdef DEBUG 
      printf("bu"); 
    sleep(1.0); 
    #endif 
     
    if ( gLastDrive == FORWARD ) 
      ticks = DRIVE_TICKS_CORRECTION; 
     
    motor(DRIVE_MOTOR, -DRIVE_SPEED);     
    while ( read_encoder(DRIVE_ENCODER) > ticks );     
    brake(DRIVE_MOTOR); 
    reset_encoder(DRIVE_ENCODER); 
     
    gLastDrive = REVERSE; 
     
    return; 
     
}  // end BackUp() 
 
 
// Turn the robot left. 
void TurnLeft(void) 
{ 
    int ticks = TURN_LENGTH_TICKS; 
     
    gHeading = (gHeading + 3) % 4; 
     
    #ifdef DEBUG 
      printf("tl"); 
    #endif 
     
    if ( gLastTurn == RIGHT ) 
      ticks -= TURN_TICKS_CORRECTION; 
     
    reset_encoder(TURN_ENCODER); 
    motor(TURN_MOTOR, TURN_SPEED); 
    while ( read_encoder(TURN_ENCODER) < ticks ); 
    brake(TURN_MOTOR); 
     
    gLastTurn = LEFT; 
     
    return; 
     
}  // end TurnLeft() 
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// Turn the robot right. 
void TurnRight(void) 
{ 
    int ticks = -TURN_LENGTH_TICKS; 
     
    gHeading = (gHeading + 1) % 4; 
     
    #ifdef DEBUG 
      printf("tr"); 
    #endif 
     
    if ( gLastTurn == LEFT ) 
      ticks += TURN_TICKS_CORRECTION; 
     
    reset_encoder(TURN_ENCODER); 
    motor(TURN_MOTOR, -TURN_SPEED);   
    while ( read_encoder(TURN_ENCODER) > ticks ); 
    brake(TURN_MOTOR); 
     
    gLastTurn = RIGHT; 
     
    return; 
     
}  // end TurnRight() 
 
 
// Capture target at current location. 
void CaptureTarget(void) 
{ 
    #ifdef DEBUG 
      printf("cap"); 
    #endif 
     
    motor(TRAP_MOTOR, TRAP_SPEED); 
    sleep(TRAP_TIME); 
    off(TRAP_MOTOR); 
     
    gHaveTarget = TRUE; 
     
    return; 
     
}  // end CaptureTarget() 
 
 
// Release captured target. 
void ReleaseTarget(void) 
{ 
    #ifdef DEBUG 
      printf("rel"); 
    #endif 
     
    motor(TRAP_MOTOR, -TRAP_SPEED); 
    sleep(TRAP_TIME); 
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    off(TRAP_MOTOR); 
     
    return; 
     
}  // end ReleaseTarget( ) 
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