
Keeping the Focus on Heuristics:

Network Game Agent for Teaching AI
R. Andrew Lamonica*, Xudong W. Yu‡, Jerry Weinberg†

Department of Computer Science, School of Engineering
Southern Illinois University Edwardsville

*rlamoni@siue.edu, ‡xyu@siue.edu, †jweinbe@siue.edu

Abstract
Game playing programming assignments can provide
useful hands-on learning experiences for teaching
search tree programming techniques, space efficient
data representation, and heuristic evaluation
functions. However, a number of issues arise with
game playing assignments that are not relevant to the
focus of learning the AI material. Among these are
interface development and agent communication.
This paper describes the implementation of a network
game playing system that allows students to center
their attention on the relevant AI topics. Student
evaluations and test scores over the last three years
indicate that the use of this game playing system has
enhanced the learning of AI concepts.

Introduction

Students’ experience in Artificial Intelligence courses
can be enhanced by the use of computer projects, both in
and out of the classroom (Walker 1994). Game playing
programming assignments in an AI course can provide
an interesting and motivating approach for hands-on
learning of search tree programming techniques and
developing heuristics (Kumar 1999). Though, with non-
trivial games, students can become overly focused on the
less relevant aspects of the assignment such as a
reasonable interface or finding ways to test their game
playing agents against other students’ agents.
 This paper describes the design and implementation
of a networked game playing system that allows students
to center their attention on developing and testing
heuristic evaluation functions and debugging their search
tree code. The system allows students to easily pit their
developing agents against one another over a network
connection, to re-play games to see how their agents
evaluated a move, and to make changes to their agent in
the middle of a game to see how a change in the heuristic
function will alter the play. Furthermore, the system
provides a convenient API so students do not have to
concern themselves with writing interface code. This
makes it easier for them to debug their own code. The
current work targets 2-player, board games such as
Reversi, Connect Four, and Kuba.

Background

In our introductory AI course, we begin with a formal
description of how to use searches as a problem solving
technique by reviewing several brute-force search
methods such as depth-first and breadth-first search
(Russle and Norvig 1995). The students are then
introduced to heuristic search methods such as A* and
best-first search, followed by discussions of game
playing as a search problem.
 To help students better understand and appreciate
the concepts of searching, heuristics, and search-tree
programming, a set of 3 programming projects are
assigned. These assignments cover the specific topics of
blind search, heuristic search, and game tree search.
 In the first project, students are asked to apply a
blind search method to solve a relatively simple puzzle
such as 8-puzzle, or a limited version of more a complex
puzzle such as Fore & Aft or peg game (Klutz 1996). By
limiting the board sizes of these games, the search space
is made small enough that an efficient implementation of
the breadth-first search algorithm will find an optimal
solution for any initial state.
 In the second project, students are asked to
implement a heuristic search method to solve an
extension of the 1st puzzle, such as 15-puzzle, Fore &
Aft with board sizes ranging from 13x13 to 39x39 and
peg game with up to 64 pegs. The search space for these
puzzles is so large (e.g., O(15!) for 15-puzzle) that a
good heuristic is necessary for successful completion of
the assignment. Class competitions are also held to
recognize the program that either has the best solution
(e.g., fewest steps in 15-puzzle) or works on the largest
board (e.g., Fore & Aft).
 The following sections discuss the third and most
important project in this sequence, the game playing
project.

The Game Playing Project
The Game
Students are assigned to write a program that plays a
game by selecting the best move given a board state.
The most recent offering of the AI class used a game
similar to Milton Bradley’s Connect Four. In this game,

Copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

players alternate selecting a column of the board in
which to drop one of their markers. A newly dropped
marker rests on top of the highest marker already in the
column. If a column has a marker in its top position,
then it is considered full and may not be selected by
either player. The goal is to position four markers in a
row vertically, horizontally, or diagonally. The game
ends when one player reaches the goal or when all the
columns are full.

Criteria
Students are given a program stub (shown in Figure 1)
that receives the current state of the board and returns a
move. Students are assigned to add code implementing a
heuristic search method (typically alpha-beta) to select
that move. The search must be completed within a given
time limit. Making an illegal move or exceeding the
move time limit results in disqualification. The interface
monitors for violations of these two rules and reports
them with error dialogs when they occur. A rudimentary
agent is provided that the students’ agents must be able
to beat in order to qualify for the tournament. The
tournament is held during class and individual games are
projected on to a screen. Tournament winners are
rewarded with bonus points on the assignment. In
addition to submitting code, students are required to
submit documentation describing what their heuristics do
and why they think their heuristics will be effective.

P
S
t

assignment. The 2003 version of this package contained
several parts. These parts included the Game Interface
shown in Figure 2, a sample project called the Game
Stub summarized in Figure 1, a compiled agent called
NotRealBright, and some instructions. The interface is
the same software that will be used in the tournament
and is described in greater detail below. The Game Stub
is a ready-to-compile Microsoft Visual Studio Project
that performs all the steps necessary to connect with the
interface through the included Link4Server library. The
only difference between the Game Stub and the program
that students are expected to hand in is that the stub’s
findBestMove function prompts its user to type a move
rather than performing a heuristic search to find one.
NotRealBright is the agent that the students’ agents must
beat to qualify for the tournament. NotRealBright
considers only the next turn when deciding what move to
make.

The System
Three pieces of software comprise the system the Game
Interface, the Link4Server Library, and the Name Server.
The Game Interface and the Link4Server Library are
Included in the Student Package. The Game Interface
provides a graphical method for students to play games
against the agents they have written and to watch games
played between two agents. The Link4Server Library
provides an API for communicating between the Game
Interface and a student agent. The Name Server program
runs on a server and allows students using the Game
Interface to find any agents that are waiting to play.

The Interface
The Game Interface (shown in Figure 2) is a client
program that connects to one or two Link4Servers. Each
Link4Servers provides a game-playing agent. After a
student selects the agent or agents to participate in a
game, he/she presses the start button and Player One’s
turn begins. If Player One is an agent, then it is sent a
copy of the board so that it can select a move to make.
Otherwise, the student makes a move by clicking on the
game board. When the move is made it is displayed on
the board and the next player’s turn begins. When a
player wins or there are no more legal moves remaining,
the game stops and the result is displayed on the
interface.

main()
{
 Link4Server l4Interface(nameServerAddress);
 l4Interface.setName("Smith");
 while(true)
 {
 l4Interface.waitForConnection();

gameState =
 l4Interface.waitForMyTurn();

 if(gameState == BOARD_READY)
 {
 BoardState gameBoard =
 l4Interface.getCurrentBoard()
 moveToMake =
 findBestMove(gameBoard);

 l4Interface.sendMove(moveToMake)
 }

 }
}
Figure 1: Game Stub

rovided Materials
tudents are provided with a Student Package containing

he software and materials necessary to complete the

Figure 2: Game Interface

Name Server
The Name Server provides a list of waiting agents to
Game Interface instances. Figure 3 shows what this list
looks like in the Link4 Game Interface. The
Link4Server library registers its agent’s name with a
Name Server when it starts and removes the name when
it closes. When a user presses the “Player…” button to
select a player in the Game Interface the interface asks
the server to list the currently registered names and
addresses. Students can manually type the address and
port of an agent in the textbox at the bottom of the
dialog, but it is easier to just point and click.

Figure 3: Player Selection Dialog

Link4Server Library
The Link4Server Library provides the connection
functionality to an agent written by a student. This
library is included in a stub project that is provided to
students. The stub project calls the methods necessary to
allow for Game Interface instances to make connections
to this agent and ask it for a move. Students are only
concerned with the findBestMove function in Figure 1,
however they are allowed to make other changes if
desired.

System Features
The system was designed to help students test and
improve their Intelligent Agents (IA’s) with ease and to
handle problems unique to this type of programming
assignment.
Robustness. One of the first design decisions made
about this system was to keep the students code separate
from the graphical user interface code. This solves a
number of problems likely to come up when students are
developing their agents and adds some convenience at
the same time. To accomplish this separation the
students are provided with a simplistic single threaded
library that performs all communication with the multi-
threaded event-driven Game Interface through sockets.
With the separation in place, students can now debug,
stop, or crash their agent software without serious
consequences to the Game Interface. This decreases
development time because students do not need to restart
the Game Interface when their agent needs a correction
and they do not need to worry about the complicated
internals of the Game Interface when debugging.
 Clearly, sockets communication provides the needed
separation between Game Interface and agent but it has
another obvious attraction as well. Using sockets to link
Game Interface instances and student agents allows these
agents to be running on different machines than the
Game Interface. This fact adds two useful features.
First, if two students want to test their agents against
each other’s they can do so without sending each other
code or having to trust each other’s binaries. All that is
necessary is that both students have an Internet
connection. The other feature is that when conducting
the tournament the instructor does not need to worry
about student agents interfering with one another because
the two competing agents can be run on two different
machines.
 The separation of student agents onto different
computers created the need for the Name Server, which
allows students to easily connect their Game Interface
instances to waiting agents. However, this addition
could have caused crashed student agents to become a
problem because a crashed agent would fail to un-
register itself from the Name Server. To address this

concern, it was decided that Name Server entries should
be set to expire after a few minutes if they are not
explicitly renewed or deleted by the registering agent.
This causes entries from stopped or failed agents to
disappear from the list quickly and all the Link4Server
library needs to do is periodically renew its entry while it
waits for a connection. This Link4Server feature was
added to the library in a manner transparent to the
students.

Convenience. In order to maximize the time students
spend working on the heuristic search part of their agents
and minimize the time they spend learning project
specific information, we added several convenience
features to our system. We have already discussed how
the Name Server makes connecting to agents quick and
easy, but it is not the only graphical user interface feature
added for convenience.
 The Game Interface has a video-player like interface
that gives a student the ability to browse through the
game just played and see how his/her agent performed
(see Figure 2). This can help find errors or weaknesses
with the heuristic that would not be visible without close
examination of the game as a whole. When the student’s
agent is stateless (as discussed in the next section) the
student can use this interface for more than just
reviewing a completed game. The video-player
functionality can be used to make incremental
improvements to heuristics easier. If the student finds a
position in the game where his/her agent made a mistake
with its next move the student can make appropriate
corrections and then replay the game from just prior to
the mistake. This joined with the ability to pause a
playing game gives a student the option to undo any
move made for any reason, including because the agent
just won by catching an opponent’s blunder.
 In order to allow students the opportunity to catch a
mistake made by their agent when playing against
another agent, we added a minimum move time to the
interface, in addition to the maximum move time used
during the tournament. If a minimum move time is set
and the currently running agent returns its move choice
before that minimum time has elapsed, then the interface
waits for the minimum time to pass before starting the
next agent’s turn. This has the effect of slowing down
the game to a more easily observable speed. This is a
handy feature to have during the tournament because
students usually optimized their agents to run too fast
rather than too slow, to avoid time limit violations.

Flexibility. Because the goal of this project is for
students to learn to write heuristics, one of the design
decisions made early was to try and keep students’
agents stateless. For our purposes, a stateless agent is
one that can be sent any board arrangement at any time
and it will respond with what it thinks is the best move,

given that arrangement. With stateless agents playing,
the student has the option to interrupt a game and change
a move, ask the agent to try the same move over again,
or even have a different agent make the next move.
These changes can be accomplished by pressing the
pause button on the Game Interface then changing
players by clicking on one of the two “Player…” buttons
(Figure 2). We cannot guarantee that students will
follow the stateless model; however, if they do testing
becomes easier. To help students keep to the stateless
model we designed the underlying communications
architecture to accommodate it.
 The underlying communications architecture for this
system supports stateless agent execution by
retransmitting the entire board at the beginning of each
move instead of just the last move made. Additionally,
the board arrangement is sent in a player-neutral format.
This means that in Link4 pieces are labeled MY_PIECE
or OPPONENTS_PIECE not player-one or player-two
which would require the agent to know which player it
is. A stateless agent playing when “Disconnect after
every move” option has been selected in the Game
Interface can even play against itself with just one
instance running.

Evaluating Results

Our experience from the last three years indicates that
puzzle solving, game playing projects, and competitions
can have positive effects on student learning (see Table
1). Specifically, students’ experience is significantly
enhanced, along two dimensions:
• Better motivation and higher interest level - Overall,

these competitions succeeded in increasing students’
interest in the topics and motivating the students to
learn the concepts and technique and apply them in a
challenging environment. The competition clearly
inspired the students. Many of them spent days and
even weeks creating and adjusting their programs,
working until the last minute. The actual contests
attracted interested faculty members, students not
enrolled in Artificial Intelligence classes, and even
people from the community.

• Better understanding of the related material –
Analysis of our examination records indicates better
student understanding of basic concepts, especially
those related to the projects such as blind and
heuristic search, and game playing as search. As
shown in the table below, class averages on project-
related materials are generally higher than the
overall class averages. The averages are even higher
among students who successfully completed at least
two of the three projects.

Term

Class Average

(all material)

Class Average

(project-related material)

Avg. of Students who

completed project

(project-related material)
Spring '03 75% 86% 91%
Spring '02 72% 75% 82%
Spring '01 67% 77% 85%

Table 1: Exam Result Summary

Future Work
Now that this project has shown it is successful in
motivating students to learn heuristic search techniques,
we have decided to focus on refining the tools used in
this project.
 The game interface and name server were originally
written to be game independent. However, due to time
constraints, only the Name Server has been used for
more than one game. For next semester’s class, we will
focus on making the Link4 module of the game interface
interchangeable with modules for other popular board
games.
 In the previous semester, several students indicated
that they tested their heuristics against real players in
online game rooms. It has been suggested that we could
create a link between the Link4Server Library and a
game web site. It is even possible that this link could be
used instead of the game interface for running the
competition. Students would then be able to test their
agents against real people in addition to each other’s
agents.

Material Availability
The game playing system is available for educational
use. The current system can be downloaded at the
following website: http://www.cs.siue.edu/gameplaying/

References
Kumar, D. 1999. Pedagogical Dimensions of Game
Playing. ACM Intelligence Magazine, 10(1), 9-10.

Peg Solitaire. 1996. Palo Alto: Klutz Press

Russell, S. J., and Norvig, P. 1995. Artificial
Intelligence: A Modern Approach. New Jersey: Prentice
Hall.

Walker, E. L. 1994. The Use of Computers for Teaching
Artificial Intelligence at Rensselaer. Working Notes of
the AAAI Symposium: Improving Instruction of
Introductory Artificial Intelligence: 47-50.

	Keeping the Focus on Heuristics:
	Network Game Agent for Teaching AI
	Abstract
	Introduction
	Background
	The Game Playing Project
	The System
	Evaluating Results
	Future Work
	Material Availability
	References

